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In this dissertation we address shortcomings of two important group commu-

nication layers, IP Multicast and gossip based message dissemination, both of

which have scalability issues when the number of groups grows.

We propose a transparent and backward-compatible layer called Dr. Mul-

ticast to allow data center administrators to enable IPMC for large numbers of

groups without causing stability issues. Dr.Multicast optimizes IPMC resources

by grouping together similar groups in terms of membership to minimize re-

dundant transmissions as well as cost of filtering unwanted messages.

We then argue that when nodes belong to multiple groups, gossip based

communication loses its appealing property of using fixed amount of band-

width. We propose a platform called GO (for Gossip Objects) that bounds the

node’s bandwidth use to a customizable limit, prohibiting applications from

joining groups that would cause the limit to be exceeded.

Both systems incorporate optimizations that are based on group similarity or

affinity. We explore group affinity in real data-sets from social networks and a

trace from an industrial setting. We present newmodels to characterize overlaps

between groups, and discuss our results in the context of Dr. Multicast andGO.

The chapters on Dr. Multicast andGO are self-contained, extended versions

of papers that appeared respectively in the ACMHot Topics in Networks (Hot-

Nets) Workshop 2008 [85] and the International Peer-to-Peer (P2P) Conference

2009 [87].
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iv



ACKNOWLEDGEMENTS

I would first and foremost like to thank my co-authors of the work presented

here for the many hours of stimulating, productive and fun conversations.

These people are (in alphabetical order) Hussam Abu-Libdeh, Mahesh Bal-

akrishnan, Ken Birman, Gregory Chockler, Qi Huang, Jure Leskovec, Deepak

Nataraj and Yoav Tock. I thank Danny Dolev, Krzys Ostrowski, Anne-Marie

Kermarrec, Davide Frey and Martin Bertier for their contributions at an earlier

stage of the GO project [38].

Furthermore, I want to acknowledge Hitesh Ballani, Idit Keidar, Jon Klein-

berg, Tudor Marian, Robbert van Renesse and Alexey Roytman for valuable

input and assistance, and Mike Spreitzer for producing the WEBSPHERE trace. I

feel privileged to have had a chance to work with these great people, and look

forward to continue cooperating with them in the future. The same is true for

all the other people I worked with on projects that are not included in this dis-

sertation.

I am deeply thankful to my advisor, Ken Birman. I truly benefited from his

well of wisdom, and I leave Cornell twice as strong as when I entered, in large

part owing to his undying enthusiasm and energy. I am also grateful to the

rest of the committee, Jon Kleinberg, Danny Dolev and Steven Stucky, for their

advice and encouragement in all things computational and musical.

My friends in Ithaca made my stay at Cornell in all aspects more exciting,

engaging and enjoyable. Whether it was for world travel, gorge jumping, din-

ner parties, movie nights, board games, dancing or deep philosophical conver-

sations, I was always honored to have their company. There are too many of

you to enumerate, but I trust you know who you are and that you forgive my

laziness.

v



Since I am half-way into an Academy Awards speech here anyway, I also

want to thank my family for their endless source of support, encouragement

and smiles in times both sweet and sour. I truly appreciate each and every one

of you.

Last, but certainly not least, I want to thank my lovely Becky for the won-

derful years we have had together. Her astonishing energy and drive is conta-

gious, and without her I might still be aimlessly awaiting directions from my

future self. (I also might be ignoring invisible stop signs, wearing sneakers with

a dress suit and inhaling spaghetti in job interviews.) Thank you for what you

have done for me.

vi



TABLE OF CONTENTS

Biographical Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1
1.1 Modern Networking . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Group Communication . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dr. Multicast 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Multicast Scalability . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Multicast Stability . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Acceptable-Use Policy . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Policy Primitives . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Higher-Level Policy . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Policy Examples . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Library Module . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 The MCMD Agent . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6.2 Real-World Application . . . . . . . . . . . . . . . . . . . . 37

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7.1 Stability and Security . . . . . . . . . . . . . . . . . . . . . . 40
2.7.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Gossip Objects 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Gossip Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Random Dissemination . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Optimized Dissemination . . . . . . . . . . . . . . . . . . . 50
3.2.4 Traffic Rates and Memory Use . . . . . . . . . . . . . . . . 58

3.3 Platform Implementation . . . . . . . . . . . . . . . . . . . . . . . 59

vii



3.3.1 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 Gossip Mechanism . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Membership Component . . . . . . . . . . . . . . . . . . . 61
3.3.4 Rumor Queue . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1 Rumor Stacking and Message Indirection . . . . . . . . . . 63
3.4.2 Real-World Scenarios . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Affinity 74
4.1 Social Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Yahoo! Groups . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.2 Wikipedia Editors . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.3 Amazon.com Recommendations . . . . . . . . . . . . . . . 79
4.1.4 LiveJournal Communities . . . . . . . . . . . . . . . . . . . 79

4.2 Modeling Social Interactions . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Power-law Distributions . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Mutual Interest Model . . . . . . . . . . . . . . . . . . . . . 82

4.3 Systems Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 WebSphere Bulletin Boards . . . . . . . . . . . . . . . . . . 84

4.4 Modeling Systems Communication Channels . . . . . . . . . . . . 87
4.4.1 Hierarchical Components . . . . . . . . . . . . . . . . . . . 88

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.1 Visualizing Affinity . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.2 Baseline Overlap . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Dr. Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.1 Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6.2 The MCMD Heuristic . . . . . . . . . . . . . . . . . . . . . 106
4.6.3 Evaluation on WEBSPHERE . . . . . . . . . . . . . . . . . . 107
4.6.4 Evaluation on other graphs . . . . . . . . . . . . . . . . . . 111

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusion 116

Bibliography 120

viii



LIST OF TABLES

4.1 Statistics for the bipartite graphs of the data sets and models. . . 92
4.2 Value of ∆ averaged over all cells of each color plot. . . . . . . . . 102

ix



LIST OF FIGURES

2.1 Receiver NIC Scalability: Probability of false positives in NIC
imperfect hash filter vs. number of addresses. . . . . . . . . . . . 12

2.2 Receiver NIC Scalability: Packet loss rate vs. number of IPMC
groups joined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Two under-the-hood mappings in MCMD, a direct IPMC map-
ping (left) and point-to-point mapping (right). . . . . . . . . . . . 18

2.4 Overview of the MCMD architecture. . . . . . . . . . . . . . . . . 22
2.5 Application Overhead: Maximum throughput for a sender us-

ing regular IPMC and MCMD with direct IPMC mapping, and
MCMD unicast to 5 or 10 receivers per group. . . . . . . . . . . . 32

2.6 Application Overhead: Average CPU utilization for the sender
application with and without MCMD. . . . . . . . . . . . . . . . . 33

2.7 Application Overhead: The overhead at a receiver caused by raw
IPMC and collapsed IPMCusage byMCMD. The overhead spike
in raw IPMC is associated with the packet loss shown in figure 2.2. 33

2.8 Network overhead: Traffic due to MCMD with and without an
urgent notification channel. . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Latency: Update latency using regular gossip (epochs) and with
the urgent notification channel enabled (ms). . . . . . . . . . . . . 38

2.10 Policy Control: CPU utilization at a normal receiver. A malfunc-
tioning node bombards the group at time 20, and the adminis-
trator restricts policy at time 40. . . . . . . . . . . . . . . . . . . . 38

2.11 Policy Control: Average throughput between two nodes in sep-
arate subnets. At time 20, a node erroneously joins a high-traffic
IPMC group in the other subnet, and the administrator corrects
the access control policy at time 40. . . . . . . . . . . . . . . . . . 39

2.12 Real-WorldApplication: CPUutilization of WEBSPHERE Bulletin
Board at a regular node vs. per-node send rate x with and with-
out MCMD support with real subscription patterns. . . . . . . . . 39

3.1 The GO Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Membership information maintained by GO nodes. The topol-

ogy of the whole system on the left is modeled by the node in
center as (i) the set of groups to which it belongs and neighbor
membership information (local state), and (ii) the overlap graph
for other groups, whose nodes are depicted as squares and edges
are represented by thick lines (remote state). . . . . . . . . . . . . 61

x



3.3 Rumor Stacking and Indirection. Different heuristics running on
the GO platform over the topology from figure 3.4. The plots
show the number of new rumors received by nodes in the sys-
tem over time (a) and as a function of messages sent (b). A ver-
tical line is drawn at the time when all 2,000 rumors have been
generated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 The topology used in first experiment. Each edge corresponds to
a gossip group, the members of which are the two endpoints. . . 65

3.5 WebSphere trace: The number of new rumors received by nodes
in the system and the number of messages sent (a), also plotted
as a ratio of new rumors per message over time (b). The nodes
using the random heuristics gossip per-group every round,
whereas GO sends a single gossip message. . . . . . . . . . . . . 66

4.1 Y-GROUPS: complementary CDF for group size (left) and user
degree (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 WIKIPEDIA: complementary CDF for group size (left) and user
degree (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 AMAZON: complementary CDF for product degree (left) and
user degree (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 LIVEJOURNAL: complementary CDF for community size (left)
and user degree (right). . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 MUTUAL-INTEREST: complementary CDF for group size (left)
and user degree (right). . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 WEBSPHERE: complementary CDF for group size (left) and user
degree (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 WEBSPHERE: Publication (a) and subscription (b) matrices. Each
dot represents a subscriber or publisher on a specific group. The
traffic rate (bottom) on groups in the trace is expressed both in
messages/sec (left) and bytes/sec (right). . . . . . . . . . . . . . . 86

4.8 WEBSPHERE: Communication patterns. A marker is plotted for
each group, in the spatial location representing its number of
subscribers and publishers. . . . . . . . . . . . . . . . . . . . . . . 86

4.9 HIERARCHY: PDF of component degrees. . . . . . . . . . . . . . . 90
4.10 Affinity matrices for 1,000 group samples from the WIKIPEDIA

and AMAZON data sets. . . . . . . . . . . . . . . . . . . . . . . . . 93
4.11 Affinity matrices for 1,000 group samples from the LIVEJOUR-

NAL social data set and the MUTUAL-INTEREST model. . . . . . . 94
4.12 Affinity matrices for 1,000 group samples from the systems data

set WEBSPHERE and HIERARCHY model. . . . . . . . . . . . . . . 95
4.13 ∆ plot for the WIKIPEDIA and AMAZON graphs. . . . . . . . . . . 98
4.14 ∆ plot for the Y-GROUPS and MUTUAL-INTEREST model graphs. 99
4.15 ∆ plot for the WEBSPHERE and HIERARCHY model graphs. . . . 100

xi



4.16 WEBSPHERE: The cost of a single multicast with the MCMD
heuristic vs. number of physical IPMC groups. . . . . . . . . . . 108

4.17 WEBSPHERE: Trade-off between filtering cost and transmission
cost for a single multicast using the MCMD heuristic for a fixed
number of physical groups. . . . . . . . . . . . . . . . . . . . . . . 109

4.18 Cost of a single multicast using the MCMD heuristic on samples
from the data sets and models vs. number of physical groups. . . 110

4.19 Percentage of total cost savings achieved using the MCMD
heuristic as a function of the number of physical groups. . . . . . 111

xii



CHAPTER 1

INTRODUCTION

1.1 Modern Networking

In the past decade we have witnessed a paradigm shift for client-server comput-

ing. The greatest impetus for the change has been cost: an expensive but mono-

lithic server can often be replaced by a cheaper but higher performance data

center, a farm of cheap commodity machines strung together in a fast network.

Data centers are well matched to the highly parallel, loosely coupled streams

of requests that arise in Internet applications, where vast numbers of clients in-

dependently interact with web services such as Google Search [5], Twitter [18],

Facebook [3], YouTube [19], interactive multiplayer games [15], and so forth.

The requests are not only logically independent and concurrent, but the actions

taken to service them are in large part independent and have only loose consis-

tency requirements. One could argue that the affordability of cheap computing

power has been as much of a driver as the rapid growth of the network itself in

enabling the diverse collection of “online” companies we see today.

Scalability, the ability to accommodate growth of computational require-

ments by adding cheap hardware, is a consideration that favors a data centers

over giant servers. The importance of scalability is evident when one recog-

nizes that computationally intensive yet interactive Internet applications, such

as web search, can often precompute high-value data such as indices that will

later support queries by hundreds of millions of users.

Scale also brings its own challenges. When a monolithic server crashes, the
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system is down until it restarts. But large data centers need to be fault tolerant

because, at any point in time, many components will be faulty or in the midst of

upgrade. Google, for example, has data centers that comprise tens to hundreds

of thousands of low-cost servers. Such a data center will inevitably experience

a significant number of failures in a year [20].

Some applications are suited to having clients provide and exchange re-

sources and information in a peer-to-peer fashion rather than burdening the

servers in the data center. The initial reasons behind avoiding centralization

were to evade the law — file exchange sites such as KaZaA [9] hoped to avoid

the fate of the centralized Napster music sharing site, which was shut down by

court order for promoting copyright infringements [10]. Later, the advantages

of decentralized peer-to-peer computing were characterized more carefully, re-

sulting in a surge of research on the topic that has now endured for more than

a full decade [74]. An example of a prominent peer-to-peer system is Skype’s

voice-over-IP telephone service [16], in which the system circumvents delay and

dropouts and a potential bandwidth bottleneck at the Skype data center by hav-

ing users communicate directly with one another. The clients also maintain an

overlay network for users currently online, allowing the service to scale dynam-

ically without any additional cost in Skype’s data centers.

The current trend is towards an intriguing mixture of data center and peer-

to-peer systems called cloud computing. Users continuously interact with servers

in some data centers (in the “cloud”), computation is done by both the client

(the “edge”) and the cloud servers and the cloud stores both private and public

data (e-mail, documents, web pages, blogs, etc.). The data centers in the cloud

employ peer-to-peer technology to ensure that critical data is replicated, and to
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balance load by distributing it geographically across data centers while optimiz-

ing latency [45, 62].

1.2 Distributed Systems

Distributed computing is the paradigm of solving a computation problem in par-

allel on multiple machines that are connected by a network, for instance in a

data center or in a peer-to-peer network, and a system that performs distributed

computing is a distributed system.

Developing a modern distributed system is a complex and error-prone task.

For example, despite careful design and skilled engineering, in one highly pub-

licized event the Skype peer-to-peer overlay fragmented beyond what the re-

covery procedures could handle, rendering the system unusable for users for

approximately two days [31]. Amazon’s peer-to-peer storage balancing algo-

rithms, in the S3 platform, malfunctioned in a way that directed all traffic to a

single server [79]. And some content delivery overlays, including KaZaA [9],

are notorious for serving up contaminated results (such as old Frank Sinatra

songs that music industry operatives have uploaded under the titles of popular

recent releases). This argues for a more principled approach to designing and

reasoning about distributed systems.

Much as the complexity of writing regular software can be reduced by con-

cise modular programming, the complexity of designing a distributed system

can be reduced by constructing a stack of thin layers, each of which has a clearly

defined interface and purpose. For example, Yahoo’s PNUTS [45] and Google’s

BigTable [43] are thin layers that are used by the respective companies for sim-
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ple but efficient distributed database functionality in their search engines. These

layers are lean in terms of complexity and code, for instance the BigTable layer

delegates all distributed data storage and redundancy issues to the layer sitting

beneath it, the Google File System [55].

Upper layers in the software stack depend on the correctness of the lower

layers. Problems tend to arise if the interface of the layer and/or functionality

are not properly specified or implemented. Fortunately, the correctness of the

lower layers has been scrutinized heavily for long periods of time. However, as

the needs of the applications in the upper parts of the stack change with time,

the assumptions that have been made in the lower layers sometimes fail and

appear as frustrating bugs.

In this dissertation we identify and remedy scalability problems in the lower

layers of modern distributed systems, specifically issues with two popular group

communication paradigms. As the number of groups scale up, both layers start

behaving badly, but for quite different reasons. Before delving deeper into these

issues in section 1.4, we will first define and discuss the role of group commu-

nication in distributed systems.

1.3 Group Communication

Because the numerousmachines hosting the layers of a distributed system could

be connected by a potentially lossy network, scalable and reliable communica-

tion is a fundamental requirement addressed when designing those layers. A

number of communication paradigms exist to accommodate these needs. We

will discuss the merits and drawbacks of the ones central to this thesis.
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Point-to-point unicast. A simple scheme is to maintain TCP connections

between every pair of nodes that talk to one another, called point-to-point unicast.

The reliability properties of the underlying TCP protocol ensure that temporary

message loss or corruption of network links do not affect the system. While

point-to-point unicast via TCP is feasible at smaller scales, for instance Yahoo!’s

PNUTS [45] is designed in this fashion, there is much overhead associated with

initializing and maintaining point-to-point unicast connections at larger scales,

particularly if nodes have many communication partners.

Multicast. Nodes in distributed systems sometimes broadcast updates or in-

formation, meaning that they transmit the same packet simultaneously to all

receivers. The nodes may not have the capabilities to maintain up to n− 1 TCP

connections if the number of nodes n is large, and so a different scheme from the

point-to-point unicast over TCP is needed. Node could also transmit packets to

a more specific set of nodes, a paradigm known as application-levelmulticast or

one-to-many communication. Because target sets frequently do not change, they

are commonly specified as a multicast group.

Publish-subscribe. Another abstraction for multicast is publish/subscribe

communication, in which publishers and receivers respectively send and receive

messages to and from a topic of interest [50]. We will use the terms groups and

topics interchangeably.

Gossip. One popular idea to send message one-to-many or one-to-all is to

use gossip based protocols. Gossip was originally used to disseminate updates

for replicas in a database system [49]. Each node exchanges the set of informa-

tion it has learned with a random node during every time epoch. Nodes now

communicate only with a small subset of other nodes and they tolerate substan-
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tial node and message loss, at the cost of higher latency of dissemination.

IP Multicast. Another idea for one-to-many communication called IP Multi-

cast (IPMC) was popularized in the early 1990s [48]. Nodes can join or leave

a given group, and they can send and receive all messages sent within the

group. IPMC operates on a network-level, leaving group membership and dis-

semination to the operating system kernel and networking hardware instead of

the application itself. The semantics of IPMC is similar to that of IP unicast,

best-effort guarantee with respect to routing but without any intrinsic reliabil-

ity mechanism. Reliable IPMC has been the subject of much work in the past

[33, 34, 53, 39]. IPMC is supported on most major routers and switches, and has

in fact became the only option for multicast transport offered by operating sys-

tems and networks. Remarkably, IP Multicast rarely sees much use, for reasons

we describe in chapter 2.

1.4 Contributions

In this dissertation we address shortcomings of two important group commu-

nication layers, IP Multicast and gossip based message dissemination, both of

which have scalability issues when the number of groups grows, as stated ear-

lier.

In chapter 2, we demonstrate that modern hardware limitations can trig-

ger major stability problems with IPMC when too many groups are deployed.

We propose a transparent and backward-compatible layer called Dr. Multicast

to allow data center administrators to enable IPMC for large numbers of groups

without causing stability issues. Dr.Multicast further optimizes the use of IPMC
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resources by grouping together similar groups in terms of membership to min-

imize redundant transmissions as well as cost of filtering unwanted messages.

In chapter 3, we argue that when nodes belong to multiple groups, gossip

based communication loses its appealing property of using fixed amount of

bandwidth. We propose a platform called GO (for Gossip Objects) that bounds

the node’s bandwidth use to a customizable limit, prohibiting applications from

joining groups that would cause the limit to be exceeded. We make the observa-

tion that gossip rumors are small so multiple rumors can be packed in a single

packet, and thus rumors could be delivered indirectly via nodes in other gos-

sip groups. GO exploits this observation by computing the utility of including

a rumor in a message, taking into account the layout of gossip groups and the

properties of the rumors.

Both Dr. Multicast and GO incorporate optimizations that are based on

group similarity. The natural next question is “How similar are subscriptions be-

tween groups?” We explore the affinity or similarity between groups in chapter

4 by considering real data-sets from social networks and an industrial setting.

We present and analyze models to characterize overlaps between groups, and

discuss our results in the context of Dr. Multicast and GO. We discuss future

questions and conclude the dissertation in chapter 5.

The chapters on Dr. Multicast andGO are self-contained, extended versions

of papers that have appeared in print in peer-reviewed conferences. The work

on Dr. Multicast appeared in the ACMHot Topics in Networks (HotNets) work-

shop 2008 [85] as well as the Large-Scale Distributed Systems and Middleware

(LADIS) workshop the same year [86]. The paper is in preparation for submis-

sion to the USENIX Symposium on Networked Systems Design and Implemen-
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tation (NSDI) in 2010. The work on GO will appear in the Large-Scale Dis-

tributed Systems and Middleware (LADIS) in 2009 [88], and was invited to the

International Peer-to-Peer (P2P) Conference 2009 [87].
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CHAPTER 2

DR. MULTICAST

Data centers avoid IP Multicast due to scalability and stability con-

cerns. In this chapter, we introduce Dr. Multicast (MCMD), a system

that maps IPMC operations to a combination of point-to-point uni-

cast and traditional IPMC transmissions. MCMD optimizes the use

of IPMC addresses within a data center, while simultaneously re-

specting an administrator-specified acceptable-use policy. We argue

that with the resulting range of options, IPMC no longer represents

a threat and can therefore be used much more widely.

2.1 Introduction

As data center networks scale out, the software stack running on them is increas-

ingly oriented towards multicast communication patterns. Publish-subscribe

layers [14, 17] push data to large numbers of receivers simultaneously, clus-

tered application servers [1, 8, 7] replicate state updates and heartbeats between

server instances, and distributed caches [4, 11] invalidate and update cached in-

formation on large numbers of nodes. IP Multicast (IPMC) [48] is included by

many of these products as a communication option — it permits each message

to be sent using a single I/O operation, reducing latency and load at end-hosts

and in the network.

Unfortunately, IPMC has earned a reputation as a poor citizen. Part of the

problem relates to scalability: multicast filtering at switches and end-host NICs
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does not scale well to large numbers of groups, defaulting to system-wide flood-

ing beyond a threshold limit. Additionally, IPMC is perceived as an unstable

technology— the intrinsic asymmetry between sending and receiving rates that

makes it such a powerful communication option also renders it extremely dan-

gerous if misused. Reliability and flow control protocols layered over IPMC

are prone to ‘storms’ that can disrupt the entire data center. With the manage-

ment of IPMC usage practically unsupported, administrators choose to banish

it from their data centers, forcing applications to resort instead to redundant

unicast transmissions.

This chapter introduces MCMD, a technology that permits data center op-

erators to selectively enable IPMC while maintaining tight control on its use.

The key insight behind MCMD is that IPMC addresses are scarce and sensitive

resources. Accordingly, MCMD allows administrators to define fine-grained

policies that dictate access control and IPMC usage rules within the data center

— for example, by disallowing the use of IPMC by specific nodes, or by setting

a limit on the number of IPMC groups in the data center. Taking into account

these policies as well as multicast usage patterns, MCMD uses a clustering to

efficiently allocate a limited number of IPMC addresses to selected groups (or

sets of groups), and uses unicast communication for the rest.

To enforce access control and implement IPMC address allocations to

groups, MCMD resides between the application and the OS network stack and

intercepts standard IPMC system calls. Each IPMC address used by the appli-

cation is translated into a combination of IPMC and unicast addresses. This

translation spans two extremes:

• A true IPMC address is allocated to the group.
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• Communication to the group is performed using point-to-point unicast

messages to individual receivers.

Importantly, MCMD is completely transparent, requiring no modification to

either the application or the network; this is a crucial property given the reliance

of data centers on commodity hardware and software. Consequently, MCMD is

extremely easy to deploy and use, supporting legacy IP Multicast applications

over existing data center networks. MCMD is robust, timely and scalable in the

number of groups in the system, running a gossip-based control plane across

end-hosts to track membership and distribute address translations to senders.

The contributions of this chapter are the following:

• An approach to fine-grained policy control of IPMC within data centers

that mitigates vulnerabilities and optimizes the use of multicast resources.

• A scalable and robust implementation that resides transparently between

the application and the network stack.

• An evaluation using real-world subscription patterns based on a trace col-

lected from a widely deployed commercial application server.

We will consider the problems of IPMC in data centers in the following sec-

tion. The acceptable-use policy primitives and architecture of MCMD are dis-

cussed respectively in sections 2.3 and 2.4. We analyze the trace and experi-

mentally evaluate components of MCMD in section 2.6. We will discuss related

work in section 2.7, and conclude the chapter with section 2.8.

Later, we formalize the optimization problem of allocating a limited number

of IPMC addresses, and provide and evaluate an effective heuristic for solving
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Figure 2.1: Receiver NIC Scalability: Probability of false positives in NIC
imperfect hash filter vs. number of addresses.

it in chapter 4.

2.2 Motivation

In this chapter, we focus on the use of IP Multicast by trusted applications run-

ning within an administratively homogeneous data center. Applications are

assumed to be non-malicious, but subject to misconfiguration and bugs. We as-

sume the data center network to be primarily switched, with multiple levels of

switching hierarchy and a top-level gateway router. Our target setting spans a

range of application domains — large-scale Internet services, financial clusters,

and even cloud computing platforms where back-end components use multi-

cast to implement highly available infrastructural services.
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Modern data centers avoid IPMC, for two important reasons. First, IPMC

is perceived as an unscalable technology — switches and end-host NICs can be

overloaded by large numbers of groups and fail to effectively filter multicast

traffic. Second, applications using IPMC are famously unstable, potentially ex-

posing the data center to DoS scenarios and chaotic multicast storms.

2.2.1 Multicast Scalability

Layer 2 devices such as switches and NICs store membership information in

the form of Ethernet multicast addresses (effectively 23 bits long), dropping the

high-order 5 bits of each 28 bit class D IP address in the process [48]. Conse-

quently, 32 IP addresses map to a single Ethernet MAC address, creating the

possibility for expensive collisions if the data center uses thousands of ran-
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domly chosen IPMC addresses. In practice, collisions can occur through poor

address selection by applications even when a small number of groups is in-

volved [6, 75]. For example, the default multicast group used by early versions

of BEAWebLogic was 237.0.0.1 [2], an address that collided with the special all-

hosts group 224.0.0.1 [48]; following versions of WebLogic changed the default

to 239.192.0.0 [13] and added an injunction in the documentation to never use

addresses in the x.0.0.1 range. Collisions can be extremely disruptive, allowing

unwanted traffic to percolate through switches and NICs to end-host kernels,

which must perform expensive discards in software.

Amore fundamental problem is the limited capacity available on devices for

storing membership information. To filter incoming multicast packets, a typical

end-host NIC uses a combination of a perfect check against a small set of ad-

dresses, as well as an imperfect check against a hashed location within a table

(effectively, a single-hash Bloom filter [40]). Stevens et al. [80] cite one com-

mercial NIC as having a perfect matching set of 16 addresses and an imperfect

matching table of 512 bits, another NIC as having a perfect matching set of 80

addresses with no imperfect matching table, and older NICs as supporting only

imperfect matching with a 64 bit table. Figure 2.1 shows the probability of false

positives for imperfect matching tables of size 128 bits and 512 bits.

Figure 2.2 illustrates the problem in practice. In this experiment, a multi-

cast sender transmits on 2k multicast groups, whereas the receiver listens to k

multicast groups. We varied the number of multicast groups k and measured

the packet loss at the receiver. All group IP addresses were carefully chosen

to avoid Ethernet address collisions. The sender transmits at a constant rate

of 15,000 packets/sec, with a packet size of 8,000 bytes spread across all the
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groups. The receiver thus expects to receive half of that, i.e. 7,500 packets/sec.

The receiver and transmitter have 1Gbps NICs and are connected by a switch

with IP routing capabilities. The experiments were conducted on a pair of single

core Intel R© Xeon
TM

2.6GHz machines. The figure shows that the critical thresh-

old that this particular NIC can handle is roughly 100 IPMC groups, after which

throughput begins to fall off.

Switches perform only marginally better. They have been known to silently

discard membership information beyond a threshold number of groups [12];

more commonly, they resort to flooding data on all ports. The performance of

modern 10Gbps switches was evaluated in a recent review [68] which found

that their group capacity ranged between as little as 70 and 1500. Less than half

of the switches tested were able to support 500 multicast groups under stress

without flooding receivers with all multicast traffic.

To summarize, multicast does not scale to large data centers with thousands

of groups for two reasons — the imperfect mapping between IP and Ethernet

multicast addresses on NICs and switches, and the limited capacity available

on such devices for storing membership state. Collisions due to the imperfect

mapping between IP addresses and Ethernet MAC addresses are easy to avoid

in principle — by simply fixing the first five bits of all IPMC addresses in use —

but occur in practice due to arbitrary address selection by applications. Capacity

constraints within switches andNICs are much harder to resolve— for instance,

each make of NIC can have a different hashing scheme and collisions are likely

even with a few dozen groups. As a result, data centers are severely constrained

in the number of IPMC groups they can support simultaneously.
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2.2.2 Multicast Stability

The perception that IPMC is an unstable technology is harder to demonstrate in

simple experiments. Below are some common scenarios encountered in modern

data center deployments:

• Multicast Storms — A slow receiver running a publish-subscribe product

with a built-in reliability layer drops packets and continuously multicasts

retransmission requests to the group, provoking a multicast storm of re-

transmissions by other receivers that slows down the entire group and

causes further packet loss — and potentially creates a cascading effect that

brings the entire data center to a standstill [13, 75].

• Multicast DoS — An incorrectly parametrized loop results in a sender

transmitting data to an IPMC group at very high speeds, overloading all

the receivers in the group.

• Traffic Magnets — A receiver in a particular cluster within the data center

inadvertently subscribes to one or more high data-rate groups used by a

different cluster within the data center; the resulting flood of incoming

traffic saturates the bandwidth connecting this cluster to the main data

center topology.

• Scattershot Senders — A programming error causes an application to send

data to the wrong IPMC address spamming machines subscribed to that

group with packets that need to be discarded.

• IGMP Churn — A faulty receiver joins and leaves groups at a very high

rate, overloading the networking back plane.
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The root causes of multicast instability are two-fold — the skewed balance

of power between senders and receivers in IPMC, and the free-for-all nature

of its usage. Any machine can join or send data at any speed to any group

in the system, with IPMC providing absolutely no regulatory mechanisms for

multicast usage.

2.3 Acceptable-Use Policy

The basic operation of MCMD is simple. It translates an application-level mul-

ticast address used by an application to a set of unicast addresses and network-

level multicast addresses, as shown in figure 2.3. The translation is governed by

an acceptable-use policy for the data center as defined by the system adminis-

trator.

In this section we describe the policy primitives supported by MCMD, and

demonstrate how scalability and stability concerns can be mitigated by con-

structing a high-level acceptable-use policy made from those building blocks.

2.3.1 Policy Primitives

In this section the terms logical and application-level groups are used inter-

changeably; the same goes for physical and network-level groups. An arbitrary

node is denoted by the letter n.

We use the following notation while describing the primitive operations:
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Figure 2.3: Two under-the-hood mappings in MCMD, a direct IPMCmap-
ping (left) and point-to-point mapping (right).

• Logical groups by upper-case letters: A, B, C ...

• Physical groups by lower-case letters: a, b, c ...

If the physical group a is included in the set of unicast and multicast ad-

dresses that a logical group A is translated into by MCMD, we say that the

physical group a is a transport for the logical group A.

In reality, identifiers for both logical and physical groups are independently
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drawn from the set of class D IP addresses. For convenience, we assume that

the physical and logical groups represented by the same letter are mapped to

the same IP address; for example, logical group A and physical group a are

both identified by the IP address 239.255.0.1. In addition, while discussing un-

modified IPMC, we ignore the existence of logical groups and deal only with

nodes and physical groups.

By default, no node in the data center is allowed to send to or join any logical

group. The primitives serve the purpose of selectively allowing nodes to join

and send to logical groups, as well as mandating when physical IPMC groups

can be used as transports for logical groups.

MCMD understands a small set of primitives:

• allow-join(n, A) —Node n is allowed to join the logical group A.

• allow-send(n, A)—Node n is allowed to transmit data to logical group A.

• allow-IPMC(n, A) — Node n is allowed to use physical IPMC groups as

transports for the logical group A.

• max-rate(n, A, X) — n is allowed to send data at a maximum rate of X

KB/s to any of the physical addresses that are mapped to the logical group

A.

• max-IPMC(n,M)— n is allowed to join at mostM physical IPMC groups.

• limit-IPMC(M)—Amaximum ofM IPMC groups can be used within the

data center.

• max-churn(M) — Each node in the system is limited to M membership

change events per second.

• limit-filtering(α) — The fraction of unwanted traffic that can be tolerated

by a receiver (i.e, α = 0.05 implies that up to 5% of the traffic a node
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receives can be in logical groups it did not join).

Our system implements these primitives efficiently; by intercepting socket

system calls and controlling the mapping from logical groups to physical ad-

dresses, it can prevent nodes from joining or sending to logical groups, as well

as limit the sending rate to these groups. Further, the use of IPMC can be en-

abled selectively on a per-group and per-node basis. We believe that this com-

pact set of primitives is sufficient to mitigate most if not all the vulnerabilities

of multicast communication within data centers.

2.3.2 Higher-Level Policy

The primitives allow a data center administrator to express policies on a spec-

trum that spans two extremes. On one hand, he or she can ban the use of IPMC

completely, in which case all application-level multicast addresses are trans-

lated into a set of unicast addresses; alternatively, he or she can mandate the use

of raw IPMC, in which case each application-level multicast group is directly

mapped to a corresponding network-level multicast group. Actualmappings lie

between these two cases, with each application-level multicast group mapped

to a combination of unicast addresses and network-level multicast addresses,

depending on the use of the primitives and subscription patterns.

While MCMD itself is controlled by policies expressed in terms of its primi-

tive operations, we expect data center administrators to use higher level tools to

define acceptable-use policies in a user-friendly manner. These policies would

‘compile’ into the lower level primitives that MCMD understands. In this chap-

ter, we restrict ourselves to a very simple scheme for generating these lists of
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primitive operations — we expect the data center administrator to map appli-

cations within the data center to the specific nodes they run on, define the set

of logical groups to which these applications send or receive data in, and conse-

quently generate a mapping from the nodes to the logical groups they use.

2.3.3 Policy Examples

The policies defined by the administrator resolve the stability problems of IPMC

by implementing a form of access control for groups. In addition, they mitigate

the scalability concerns of IPMC by placing a limit on the total number of IPMC

addresses in use within the data center and by each node individually.

Are these simple primitives sufficient to prevent the stability problems of

IPMC? Let us consider the instability scenarios outlined earlier:

• Cure for the Multicast Storm scenario: While it is difficult to prevent un-

stable reliability protocols running within a group from impacting the re-

ceivers in that group, MCMD can isolate the slowdown to just that group

by either disabling IPMC transports for it or placing a rate cap.

• Cure for the Multicast DoS scenario: By limiting the maximum rate at

which any sender is allowed to transmit data to a particular group, we

can prevent the scenario where a single machine launches a DoS attack on

a group by sending data to it as fast as possible.

• Cure for the Traffic Magnet and Scattershot Sender scenarios: Access con-

trol mechanisms for regulating joins and sends are sufficient to prevent

both these cases. Nodes can longer join or send data to arbitrary multicast

groups.
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Figure 2.4: Overview of the MCMD architecture.

• Cure for the IGMP Churn scenario: By setting the maximum churn rate

of any single node, we can rate-limit joins and leaves to prevent network

overload.

2.4 Design and Implementation

We built MCMD in two main components; a library module that overloads the

standard socket interface and allowsMCMD to be transparently loaded into ap-

plications, and an agent daemon that is responsible for implementing the user-

defined policy and the application-level multicast mapping. Each node in the
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system has a running agent, and one of these agents is designated as a leader

that periodically issues multicast group mappings. The mapping information

is replicated across all the agents via a gossip layer, and an additional urgent

broadcast channel is used to quickly disseminate urgent updates. Figure 2.4

highlights the different components of MCMD.

In the remainder of this section we will discuss the design and implementa-

tion of each of these components in detail.

2.4.1 Library Module

The library module exports a netinet/in.h library to applications, with in-

terfaces identical to the standard POSIX version. By overloading the relevant

socket operations, MCMD can intercept join, leave and send operations. For

example:

• In the overloaded version of setsockopt(), invocations with e.g. the

IP ADD MEMBERSHIP parameter will be intercepted by themappingmod-

ule. An IGMP JOIN message will only be sent if the logical IPMC address

is mapped to a new physical IPMC address.

• sendto() is overloaded so that a send to a class D group address is

intercepted and converted to multiple sends to a list of addresses. The

acceptable-use policy can limit the rate of sends.

The library module periodically interacts with the mapping module of the

agent daemon via a UNIX socket to pull — and cache — the list of IP Multicast

groups it is supposed to join, and the translations for application-level groups
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it wants to send data to. The library module can receive invalidation messages

from the mapping module, causing it to refresh its cached entries. Simultane-

ously, it pushes information and statistics about grouping and traffic patterns

used by the application to the mapping module. This includes an exponential-

average of the message rate for the application-level group.

Multi-send Optimization

As performance optimization, the library module uses a custommulti-send sys-

tem call implemented in the Linux 2.6.24 kernel — a variant of the sendto()

call that accepts a list of destinations for the message. As a result, when the ap-

plication sends a message to an application-level group and the library module

translates the operation into a multi-send to a set of physical addresses, it can

send the message to these addresses in a single efficient system call.

2.4.2 The MCMD Agent

The agent is a background daemon process running on every node in the sys-

tem. Each agent instance acts as a mapping module, maintaining four pieces of

information that are globally replicated on every agent in the system—we refer

to these collectively as the agent state:

• Membership sets for all the nodes in the system — essentially, a map from

nodes to the application-level groups they are receivers in.

• Sender sets for all the nodes in the system — a map from nodes to the

application-level groups they are senders to.
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• Group translations — a map from application-level groups to sets of uni-

cast and multicast network addresses.

• Access control lists — two separate maps determining which application-

level groups each node in the system is allowed to receive data in and send

data to, respectively.

Each agent in the system has read-access to a locally replicated copy of the

agent state. However, write-access to the agent state is strictly controlled. The

first two items of the agent state can be written to only by the nodes concerned

— a node can change only its ownmembership set or its sender set. The last two

items of the agent state can bemodified only by the leader agent. When an agent

— leader or otherwise — writes to its local copy of the agent state, the change

is propagated to other agents in the system via a gossip layer, which guarantees

eventual consistency of agent state replicas. Since each item in the agent state

has exactly one writer, there are no conflicts over multiple concurrent updates

to the agent-state.

The leader agent allocates IPMC addresses to different sets of machines in

the data center, using the group membership information, sender information

and access control lists in its local state to determine the best set of translations

for the system. Once it writes these translations to its local state, the gossip

layer disseminates the updates to other agents in the system, which read the

translations off their local replicated copy of the agent state and direct their cor-

responding library modules to join and leave the appropriate IGMP groups. The

process followed by the leader while allocating network-level IPMC resources

to application-level multicast groups is the subject of section 2.5.
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State Replication via Gossip

A gossip-based failure detector identical to the one described by van Renesse

[83] is used to replicate the agent state across all the agents. Each nodemaintains

its own version of a global table, mapping every node in the data center to a

time-stamp or heartbeat value. Every T milliseconds, a node updates its own

heartbeat in the map to its current local time, randomly selects another node

and reconciles maps with it. The reconciliation function is extremely simple –

for each entry, the new map contains the highest time-stamp from the entries

in the two old maps. As a result, the heartbeat timestamps inserted by nodes

into their own local maps propagate through the system via gossip exchanges

between pairs of nodes.

When a node notices that the time-stamp value for some other node in its

map is older than T1 seconds, it flags that node as ‘dead’. It does not imme-

diately delete the entry, but instead maintains it in a dead state for T2 more

seconds. This is to prevent the case where an entry is reintroduced into its map

by some other node. After T2 seconds have elapsed, the entry is deleted.

The comparison of maps between two gossiping nodes is highly optimized.

The initiating node sends its peer a set of hash values for different portions of

the map, where portions are themselves determined by hashing entries into dif-

ferent buckets. If the receiving node notices that the hash for a portion differs, it

sends back its own version of that portion. This simple interchange is sufficient

to ensure that all maps across the system are kept loosely consistent with each

other. An optional step to the exchange involves the initiating node transmit-

ting its own version back to the receiving node, if it has entries in its map that

are more recent than the latter’s.
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Crucially, the failure detector can be used as a general purpose gossip communi-

cation layer. Nodes can insert arbitrary state into their entries to gossip about,

not just heartbeat timestamps. For example, a node could insert the average

CPU load or the amount of disk space available — or, more relevantly, its agent

state — and eventually this information propagates to all other nodes in the sys-

tem. The reconciliation of entries during gossip exchanges is still done based on

which entry has the highest heartbeat, since that determines the staleness of all

the other information included in that entry.

Urgent Broadcast Channel

Although gossip is useful to replicate agent state data across multiple nodes, it

can be slow. For this reason, an urgent notifications broadcast channel is used

to quickly disseminate urgent updates.

MCMD uses urgent notifications in three cases:

• When a new receiver joins a group, its agent updates the local version of

agent state and simultaneously sends unicast notifications to every node

listed in the agent state as a sender to that group. As a result, senders that

are using multi-send unicast to transmit data to the group can immedi-

ately include the new receiver in their transmissions. In addition, the new

receiver’s agent contacts the leader agent for updates to the sender set of

that group; if the leader reports back with new senders not yet reflected in

the receiver’s local copy of the agent state, the receiver’s agent sends them

notifications as well.

• When a new sender starts transmitting to a group, the agent running on it
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updates the sender set of the group on its own local version of the global

agent state, and simultaneously sends a notification to the leader agent.

The leader agent responds with the latest version of the group member-

ship information for that particular group.

• When the leader agent creates or modifies a translation, it sends notifi-

cation messages to all the affected nodes — receivers who should join or

leave IPMC groups to conform to the new translation, and senders who

need to know the new translation to transmit data to the group. These

messages cause their recipients to ‘dial home’ and obtain the new transla-

tion from the leader.

Notice that the first two cases involve a single unicast exchange with the

leader, imposing load on it that increases linearly with the level of churn in the

system. The task of updating other interested nodes in the system is delegated

to the node that caused the churn event in the first place; this ensures that nodes

can only disrupt themselves by changing membership and sender sets at a high

rate. In addition, MCMD limits the rate of such events at any particular node.

Also, since MCMD was explicitly designed for data centers, it assumes a low

rate of membership change in the system, with nomore than a few nodes joining

or leaving groups per second. When large-scale membership changes do occur

(due to correlated failure, for example), rate-limiting prevents a load spike on

the notification channel, and the gossip layer eventually converges to a stable

view of the system.
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Robustness and Responsiveness

Replicating the agent state across all the nodes makes the system robust against

leader failure. Once agents realize that the leader is no longer responsive, the

leader is marked as dead and that information is disseminated to all the nodes

via the control plane. A leader election protocol is started to appoint a new

leader agent. Additionally, the size of the replicated global view is not pro-

hibitive; for example, we can store the agent state for a 1,000-node cluster with

a membership pattern based on our real-life trace within a few MB of mem-

ory. In addition to that, complementing the gossip layer with an urgent channel

ensures that nodes are responsive to sudden changes in the state of the system.

2.5 Theoretical Considerations

The MCMD leader can map network-level IP multicast addresses to some of the

application-level groups in the system, and command others to communicate

via unicast. The mapping must adhere to the acceptable-use policy, but should

also achieve scalability goals:

• Minimize the number of network-level IPMC addresses. NICs, routers and

switches do not scale in the number of IPMC addresses, as discussed ear-

lier.

• Minimize redundant transmissions. This reduces the rate of packets sent by

publishers and alleviates network overhead.

• Minimize receiver filtering. End host filtering of unwanted traffic is expen-

sive [42]. Furthermore, imposing high CPU loads on receivers can have
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unanticipated consequences and potentially cause more trouble than the

system solves.

These goals are in tension. For instance, one could assign a single physical IPMC

address to multiple application-level groups that have many common receivers

at the cost of filtering of superfluous traffic for some receivers. Alternatively,

using point-to-point unicast for these groups will minimize filtering and the

number of IPMC addresses, but forces senders to transmit each packet multiple

times.

In MCMD, we put a hard limit M on the total number of physical IPMC

groups that are allowed in the system, but make redundant transmissions and

receiver filtering soft. At a high-level, our heuristic works as follows. We clus-

ter logical groups that are similar in terms of membership using the k-means

clustering heuristic with k = M . We could directly promote the groups in

these M clusters to physical IPMC groups, as this would minimize transmis-

sion costs while keeping the hard limitM . However, the filtering costs could be

prohibitive, so we gradually remove groups from clusters that have the highest

filtering costs, and have them use point-to-point unicast. When filtering costs

are below the limit-filtering threshold, we promote the current clusters to use

IP multicast.

Chapter 4 has detailed discussion of the MCMD optimization problem and

heuristics, as well as an evaluation of those heuristics on various real-world and

synthetic data sets.
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2.6 Experimental Results

We tested an implementation of MCMD to measure its overhead, policy appli-

cation, and scalability properties. We evaluated our implementation in some of

the bad-case scenarios outlined in section 2.2. We also simulated the MCMD

heuristic on a trace of IBM WebSphere Application Server to measure its po-

tential effects on multicast usage in the data center. The details of the trace are

provided in Chapter 4.3.1. In section 4.6 we will analyze the trace to better un-

derstand the types of subscription patterns that arise in a real data center. Our

results suggest that MCMD provides fast and scalable control of IP multicast

with negligible overhead.

2.6.1 Implementation

We implemented a prototype of MCMD in C/C++, and deployed it on the Em-

ulab testbed. All nodes have an Intel Pentium 3.0GHz processor and 1GB of

RAM. Unless explicitly mentioned, the network configuration is a star topology

with 100Mbps links between nodes. Each node in the testbed ran the MCMD

agent, along with one of the following applications:

• A sender application joins k logical groups, waits for 2 seconds, then trans-

mits 100,000 1KB packets using sendto() to the k groups in a round-

robin fashion as fast as possible. The application can be configured to

rate-limit the send to 5,000 packets/sec.

• A receiver application joins the same k logical groups, and waits for incom-

ing packets in a recv() loop.

31



100k

200k

300k

400k

1 2 5 10 50 100

M
ax

. t
hr

ou
gh

pu
t (

pa
ck

et
s/

se
c)

Number of groups

IPMC
DJ to 1

DJ to 5 UDP
DJ to 10 UDP

Figure 2.5: Application Overhead: Maximum throughput for a sender us-
ing regular IPMC and MCMDwith direct IPMCmapping, and
MCMD unicast to 5 or 10 receivers per group.

The rate of gossip or epoch length for the agent was set to 1 exchange per second,

unless otherwise specified. Error bars represent one standard deviation, and are

omitted if they are too small to be clearly visible.

Application Overhead

Wemeasured the difference in maximum throughput for the sender application

for varying k with and without the MCMD library. We considered both the case

where MCMD maps each application-level address to a single network-level

IPMC address, and also the case where each address resolves to 5 or 10 unicast

addresses. The average group size in the WEBSPHERE trace was around 12.

As shown in figure 2.5, there is merely a 10-15% reduction of maximum

throughput by running the sender application with MCMD over one-to-one
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address mapping, depending on number of logical groups. We also measured

CPU utilization for the sender application with and without MCMD active. Fig-

ure 2.6 shows an increase of no more than 10% independent of the number of

groups. Our system supports sending over 200,000 packets per second. This

was made possible by moving system calls from the critical path of overloaded

routines to a separate thread. Collisions in hash-maps account for the slight

increase in MCMD look-up time.

Figure 2.7 shows the effect of collapsing IPMC groups on the CPU utiliza-

tion at receivers. With raw IPMC CPU utilization spikes when a large number

of groups is joined; the same spike in packet loss that was previously exhib-

ited by IPMC in figure 2.2. As figure 2.7 shows, collapsing IPMC groups by

MCMD causes a consistent CPU utilization evenwhen a large number of groups

is joined.

The performance of point-to-point unicast meets our expectations, real-

izing approximately 1/r of the maximum possible throughput when each

application-level group is mapped to r physical addresses.

We experimented with the multi-send kernel system-call separately, reveal-

ing a consistent 17% increase in throughput over a sendto() loop in user-

space. The improvements stem from fewer context switches taking place when

using our kernel calls, since substantially less data is copied from user space to

kernel space.
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Figure 2.8: Network overhead: Traffic due to MCMDwith and without an
urgent notification channel.

Network Overhead

The network overhead of the MCMD protocol is shown in figure 2.8. In this

experiment the network constitutes 16 nodes. The graph shows the amount

of traffic transmitted and received by the most loaded node with respect to net-

work traffic, namely the leader. Initially, there are 6 nodes running both a sender

and receiver, joined by 5 more nodes at time 40 and 6 more at 80. At time 120,

a new translation is computed by the leader, and an urgent notification is trans-

mitted to the appropriate nodes.

By design, the gossip module in the MCMD agent produces configurable

constant background traffic. At no point does MCMD traffic exceed 10 KB/sec,

even when the urgent notification channel is enabled.
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Latency

We now measure the latency of updates between nodes, namely membership

and mapping changes. This determines, for instance, how fast a new receiver

starts receivingmessages from senders, or how long it keeps receiving messages

after leaving a logical group. As discussed earlier, solutions need to trade-off

latency and scalability. We compare the scalable gossip control plane per se to

the fast version of MCMD that deploys an urgent notification channel on top of

the gossip mechanism. In figure 2.9 we can see how fast new updates propagate

through a 32-node network with and without the urgent notification channel. In

this experiment, the gossip module has propagated the update everywhere after

10 epochs, and follows the well-studied epidemic replication curve [83]. When

urgent notifications are used, the latency drops to at most 15 ms.

Policy Control

We revisit the Multicast DoS scenario from section 2.2 in which a malfunction-

ing sender suddenly starts sending large amounts of traffic in a loop to a logical

group, thus overloading the receivers. Consider a network of 16 nodes that are

sending and receiving low rates of traffic over a single IPMC group. At time 20,

one of the senders starts bombarding the group with traffic. The administrator

changes the policy at time 40 to remove the faulty sender from the group. Alter-

natively, the administrator could have put a rate-limit on sends to this particular

group.

In figure 2.10 we see the CPU utilization of a receiver in the group, averaged

over 10 trials of running this experiment. The CPU utilization increases sub-
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stantially when the DoS begins, and decreases almost instantly after the new

administrative policy is issued. In effect, the sender was commanded to leave

the group via an urgent notification from the leader.

We also looked at the Traffic Magnet scenario where an unsuspecting node

in cluster B joins a high-traffic multicast group in cluster A, increasing the load

on the router between the two clusters substantially. We set up an experiment

where 12 nodes in A each transmit 20 KB/s to a logical group that is mapped to

a network-level IPMC by MCMD. We measured the average throughput over

10 trials between two regular nodes, one in each cluster, and show the results in

figure 2.11. At time 20, a node n in cluster B joins the IPMC group, causing the

throughput between the regular nodes to plummet to 2.5Mbps a 75% drop. At

time 40, the administrator changes the access policy and disallows node n from

belonging to the logical group, causing MCMD to make n leave the network-

level IPMC group. The network has recovered 5 seconds later.

Naturally, both of these episodes could have been prevented by specify-

ing a complete administrative policy with access restrictions and rate-limits for

senders, as described in section 2.3.

2.6.2 Real-World Application

To test the MCMD implementation against a real application, we modified

the Bulletin Board (BB) part of the IBM Websphere Application Server to dis-

seminate messages using MCMD. The original version uses an unstructured

application-level overlay network to broadcast each message by flooding. Since

BB has no IPMC support, we modified it to use groups through an IPMC inter-
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face.

We measured the performance of WAS with and without MCMD on a vir-

tualized cluster of 97 nodes using the subscription patterns from a system trace

that has thousands of non-empty logical groups. For the evaluation, we used

the subscription patterns from the trace in section 4.3.1 and synthesized the traf-

fic rates. Each process first joins the logical groups it ever subscribes to, and then

sends traffic to those logical groups it publishes on at a total rate of x Kb/s. Fig-

ure 2.12 shows the CPU utilization at a non-leader node as the per-node send

rate x varies. MCMD’s use of network-level multicast clearly alleviates the bur-

den of application-level packet forwarding and filtering required by the overlay.

2.7 Related Work

In the two decades since IP Multicast was first introduced [48], researchers have

extensively examined its security, stability and scalability characteristics. Much

of this work has attempted to scale and secure multicast in the wide area.

2.7.1 Stability and Security

Work on secure multicast has focused on achieving two properties in the wide-

area: secrecy and authentication [41, 67]. Secrecy implies that only legal re-

ceivers in the group can correctly receive data sent to the group, and authenti-

cation implies that only legal senders can transmit data to the group [67]. Both

these properties are typically obtained by using cryptographic keys, and much

of the work in this area has focused on the task of group key management.
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The security issues examined by MCMD are orthogonal to this existing body of

work — within a data center, we are not concerned with either secrecy or au-

thentication. Achieving these properties would not alleviate the performance

problems of IP Multicast; for instance, a sender could still spam a group with

nonsense data that fails to authenticate but nevertheless overloads receivers.

Access control for multicast has been proposed before as a solution for

achieving secure multicast [35, 58]; once again, this work is aimed at wide-area

scenarios and focuses on the secure implementation of the access control mech-

anism. SSM [37] is an IP Multicast variant that allows receivers to subscribe

to individual senders within multicast groups, eliminating the problem of arbi-

trary machines launching DoS attacks on a group.

Reliable multicast is a research sub-area in itself, and many papers have

looked specifically at the stability of reliability mechanisms. SRM [53] — a well-

known protocol with many widely deployed variants including PGM [54] — is

known to be susceptible to storms of recovery traffic in certain conditions [39].

MCMD operates at the routing layer and is oblivious to end-to-end reliability

mechanisms, but can help mitigate the ill-effects of these protocols, as described

previously.

2.7.2 Scalability

The scalability of IP Multicast in the number of groups in the system is limited

by the space available in router tables [77]. The impact of adding IPMC state to

network routers has been analyzed by Wong, Katz and McCanne [90, 91]. Prior

work on algorithmic issues and the channelization problem that is at the heart of
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the MCMD heuristic is discussed in section 4.7.

2.8 Conclusion

Many major data center operators legislate against the use of IP multicast: the

technology is perceived as disruptive and insecure. Yet IPMC offers very at-

tractive performance and scalability benefits. This chapter proposes MCMD, a

remedy to this conundrum. By permitting operators to define an acceptable use

policy (and to modify it at run-time if needed), MCMD permits active manage-

ment of multicast use. Moreover, by introducing a novel scheme for sharing

scarce IPMC addresses among logical groups, MCMD can reduce the number

of IPMC addresses needed sharply, and ensures that the technology is only used

in situations where it offers significant benefits.

42



CHAPTER 3

GOSSIP OBJECTS

Gossip-based protocols are increasingly popular in large-scale dis-

tributed applications that disseminate updates to replicated or

cached content. GO (Gossip Objects) is a per-node gossip platform

that we developed in support of this class of protocols. In addition

to making it easy to develop new gossip protocols and applications,

GO allows nodes to join multiple gossip groups without losing the

appealing fixed bandwidth guarantee of gossip protocols, and the

platform optimizes rumor delivery latency in a principled manner.

Our heuristic is based on the observations that multiple rumors can

often be squeezed into a single IP packet, and that indirect routing

of rumors can speed up delivery. We formalize these observations

and develop a theoretical analysis of this heuristic. We have also im-

plemented GO, and study the effectiveness of the heuristic by com-

paring it to themore standard random dissemination gossip strategy

via simulation. We also evaluate GO on a trace from a popular dis-

tributed application.

3.1 Introduction

Gossip-based communication is commonly used in distributed systems to dis-

seminate information and updates in a scalable and robust manner [49, 60, 39].

The idea is simple: At some fixed frequency, each node sends or exchanges

information (known as rumors) with a randomly chosen peer in the system, al-
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lowing rumors to propagate to everybody in an “epidemic fashion”.

The basic gossip exchange can be used for more than just sharing updates.

Gossip protocols have been proposed for scalable aggregation, monitoring and

distributed querying, constructing distributed hash tables and other kinds of

overlay structures, orchestrating self-repair in complex networks and even for

such prosaic purposes as to support shopping carts for large data centers [47].

By using gossip to track group membership, one can implement gossip-based

group multicast protocols.

When considered in isolation, gossip protocols have a number of appealing

properties.

P1. Robustness. They can sustain high rates of message loss and crash failures

without reducing reliability or throughput [39], as long as several assump-

tions about the implementation and the node environment are satisfied

[28].

P2. Constant, balanced load. Each node initiates exactly one message ex-

change per round, unlike leader-based schemes in which a central node

is responsible for collecting and dispersing information. Since message

exchange happens at fixed intervals, network traffic overhead is bounded

[84].

P3. Simplicity. Gossip protocols are simple to write and debug. This sim-

plicity can be contrasted with non-gossip styles of protocols, which can be

notoriously complex to design and reason about, and may depend upon

special communication technologies, such as IP multicast [48], or embody

restrictive assumptions, such as the common assumption that any node

can communicate directly with any other node in the application.
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P4. Scalability. All of these properties are preserved when the size of the

system increases, provided that the capacity limits of the network are not

reached and the information contained in gossip messages is bounded.

However, gossip protocols also have drawbacks. The most commonly ac-

knowledged are the following. The basic gossip protocol is probabilistic mean-

ing that some rumors may be delivered late, although this occurs with low prob-

ability. The expected number of rounds required for delivery in gossip protocols

is logarithmic in the number of nodes. Consequently, the latency of gossip pro-

tocols is on average higher than can that provided by systems using hardware

accelerated solutions like IP Multicast. Finally, gossip protocols support only

the weak guarantee of eventual consistency — updates may arrive in any order

and the system will converge to a consistent state only if updates cease for a

period of time. Applications that need stronger consistency guarantees must

employ more involved and expensive message passing schemes [39]. We note

that weak consistency is not always a bad thing. Indeed, relaxing consistency

guarantees has become increasingly popular in large-scale industrial applica-

tions such as Amazon’s Dynamo [47] and Yahoo!’s PNUTS [45].

Gossip also has a less-commonly recognized drawback. An assumption

commonly seen in the gossip literature is that all nodes belong to a single gossip

group. Since such a group will often exist to support an application component,

we will also call these gossip objects. While sufficient in individual applications,

such as when replicating a database [49], an object-oriented style of program-

mingwould encourage applications to use multiple objects and hence the nodes

hosting those applications will belong to multiple gossip groups. The trends

seen in other object oriented platforms (e.g., Jini and .NET) could carry over to
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gossip objects, yielding systems in which each node in a data center hosts large

numbers of gossip objects. These objects would then contend for network re-

sources and could interfere with one-another. The gossip-imposed load on each

node in the network now depends on the number of gossip objects hosted on

that node, which violates property P2.

We believe that this situation argues for a new kind of operating system

extension focused on nodes that belong to multiple gossip objects. Such a plat-

form can play multiple roles. First, it potentially simplifies the developer’s task

by standardizing common operations, such as tracking the neighbor set for each

node or sending a rumor, much as a conventional operating system simplifies

the design of client-server applications by standardizing remote method invo-

cation. Second, the platform can implement fair-sharing policies, ensuring that

when multiple gossip applications are hosted on a single node, they each get

a fair share of that node’s communication and memory resources. Finally, the

platform will have opportunities to optimize work across independently de-

veloped applications – the main focus of the present chapter. For example, if

applications A and B are each replicated onto the same sets of nodes, any gos-

sip objects used by A will co-reside on those nodes with ones used by B. To

the extent that the platform can sense this and combine their communication

patterns, overheads will be reduced and performance increased.

With these goals in mind, we built a per-node service called the Gossip Ob-

jects platform (GO) which allows applications to join large numbers of gos-

sip groups in a simple fashion. The initial implementation of GO provides a

multicast-like interface: local applications can join or leave gossip objects, and

send or receive rumors via callback handlers that are executed at particular
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rates. Down the road, theGO interfaces will be extended to support other styles

of gossip protocols, such as the ones listed earlier. In the spirit of property P2,

the platform enforces a configurable per-node bandwidth limit for gossip com-

munication, and will reject a join request if the added gossip traffic would cause

the limit to be exceeded. The maximum memory space used byGO is also lim-

ited and customizable.

GO incorporates optimizations aimed at satisfying the gossip properties

while maximizing performance. Our first observation is that gossip messages

are frequently short: perhaps just a few tens of bytes. Some gossip systems push

only rumor version numbers to minimize waste [84, 34], so if the destination

node does not have the latest version of the rumor, it can request a copy from

the exchange node. An individual rumor header and its version number can

be represented in as little as 12-16 bytes. The second observation is that there is

negligible difference in operating system and network overhead between aUDP

datagram packet containing 10 bytes or 1000 bytes, as long as the datagram is

not fragmented [89]. It follows from these observations that stacking multiple

rumors in a single datagram packet from node s to d is possible and imposes

practically no additional cost. The question then becomes: Which rumors should

be stacked in a packet? The obvious answer is to include rumors from all the gos-

sip objects of which both s and d are members. GO takes this a step further: s

will sometimes include rumors for gossip objects that d is not interested in, and

when this occurs, dwill attempt to forward those rumors to nodes that will ben-

efit from them. We formalize rumor stacking andmessage indirection by defining

the utility of a rumor in section 3.2.

We envision a number of uses for GO. Within our own work, GO will be
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the WAN communication layer for Live Distributed Objects, a framework for

abstract components running distributed protocols that can be composed easily

to create custom and flexible live applications or web pages [73, 38]. This appli-

cation is a particularly good fit for GO: Live Objects is itself an object-oriented

infrastructure, and hence it makes sense to talk about objects that use gossip

for replication. The GO interface can also be extended to resemble a gossip-

based publish/subscribe system [50]. Finally, GO could be used as a kind of

IP tunnel, with end-to-end network traffic encapsulated, routed through GO,

and then de-encapsulated for delivery. Such a configuration would convert a

conventional distributed protocol or application into one that shares the same

gossip properties enumerated earlier, and hence might be appealing in settings

where unrestricted direct communication would be perceived as potentially dis-

ruptive.

This chapter focuses on the initial implementation of GO, and makes the

following contributions:

• A natural extension of gossip protocols in which multiple gossip objects

can be hosted on each node.

• A novel heuristic to exploit the similarity of gossip groups to improve

propagation speed and scalability.

• An evaluation of the GO platform on a real-world trace by simulation.
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3.2 Gossip Algorithms

3.2.1 Model

Our model focuses on push-style gossip, but can easily be extended to the push-

pull or pull-only cases.

Consider a systemwith a setN of n nodes and a setM ofm gossip objects de-

noted by {1, 2, . . . , m}. Each node i belongs to some subset Ai of gossip objects.

Let Oj denote member set of gossip object j, defined as Oj := {i ∈ N : j ∈ Ai}.

We let Ni denote the set of neighbors of i, defined as
⋃

j∈Ai
Oj .

A subset of nodes in a gossip object generate rumors. Each rumor r consists

of a payload and two attributes: (i) r.dst ∈ M : the destination gossip object for

which rumor r is relevant, and (ii) r.ts ∈ N: the timestamp when the rumor was

created. A gossip message between a pair of nodes contains a collection of at

most L stacked rumors, where L reflects the maximum transfer unit (MTU) for

IP packets before fragmentation kicks in. For example, if each rumor has length

of 100 bytes and the MTU is 1500 bytes, L is 15.

We will assume throughout this chapter that each node i knows the full

membership of all of its neighbors Ni. This assumption is for theoretical clarity,

and can be relaxed using peer sampling techniques [57] or remote representa-

tives [82]. The types of applications for which GO is appropriate, such as pub-

sub systems or Live Objects, will neither produce immensely large groups nor

sustain extreme rates of churn.
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3.2.2 Random Dissemination

A gossip algorithm has two stages: a recipient selection stage and a content se-

lection stage [60]. The content is then sent to the recipient. For baseline com-

parison, we will consider the following straw-man gossip algorithm RANDOM-

STACKING running on each node i.

• Recipient selection: Pick a recipient d from Ni uniformly at random.

• Content selection: Pick a set of L unexpired rumors uniformly at random.

If there are fewer than L unexpired rumors, RANDOM-STACKING will pick all of

them. We will also evaluate the effects of rumor stacking; RANDOM is a heuris-

tic that packs only one random rumor per gossip message, as would occur in

a traditional gossip application that sends rumors directly in individual UDP

packets.

3.2.3 Optimized Dissemination

As mentioned earlier, the selection strategy in RANDOM can be improved by

sending rumors indirectly via other gossip objects. In the following diagram, a

triangle representing a rumor specific to gossip object j is sent from node s to a

node d only in j′. Node d in turn infects a node in the overlap of the two gossip

objects.

50



j j’
s d

We will define the utility of including a rumor in a gossip message, which in-

formally measures the “freshness” of the rumor once it reaches the destination

gossip object, such that a “fresh” rumor has higher probability of infecting an

uninfected node. If rumor r needs to travel via many hops before reaching a

node in r.dst, by which time r might be known to most members of r.dst, the

utility of including r in a message is limited. Ideally, rumors that are “young”

or “close” should have higher utility.

Hitting Time

We make use of results on gossip within a single object. Define an epidemic on

n hosts to be the following process: One host in a fully-connected network of n

nodes starts out infected. Every round, each infected node picks another node

uniformly at random and infects it.

Definition 1 Let S(n, t) denote the number of nodes that are susceptible (uninfected)

after t rounds of an epidemic on n hosts.

To the best of our knowledge, the probability distribution function for S(n, t)

has no closed form. It is conjectured in [49, 59] that E[S(n, t)] = n exp(−t/n) for

push-based gossip and large n using mean-field equations, and that E[S(n, t)] =
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n exp(−2t) for push-pull. Here, we will assume that S(n, t) is sharply concen-

trated around this mean, so S(n, t) = n exp(−t/n) henceforth. Improved ap-

proximations, such as using look-up tables for simulated values of S(n, t), can

easily be plugged into the heuristic code.

Definition 2 The expected hitting timeH(n, k) is the expected number of rounds in

an epidemic on n hosts until we infect some node in a given subset of k special nodes

assuming S(n, t) nodes are susceptible in round t.

If a gossip rumor r destined for some gossip object j ends up in a different gos-

sip object j′ that overlaps with j, then the expected hitting time roughly approx-

imates how many rounds elapse before r infects a node in the intersection of Oj

and Oj′. Two simplifying assumptions are at work here, first that each node in j

contacts only nodes within j in each round, and second that r has high enough

utility to be included in all gossip messages exchanged within the group.

Let p(n, k, t) = 1 −
(

1− k
n

)n−S(n,t)
denote the the probability of infecting at

least one of k special nodes at time t when S(n, t) are susceptible. We derive

an expression for H(n, k) akin to the expectation of a geometrically distributed

random variable.

H(n, k) =
∞
∑

t=1

tp(n, k, t)
t−1
∏

ℓ=1

(1− p(n, k, ℓ)),

which can be approximated by summing a constant number max-depth of terms

from the infinite series, and by plugging in S(n, t) from above, as shown in

Algorithm 1.
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Algorithm 1: H(n, k, t): approximate the expected hitting time of k of n at
time t.

if t ≥ max-depth then

return 1.0 {Prevent infinite recursion.}

end if

p← exp(log(1.0− k/n) · S(n, t)

return t · (1.0− p) +H(n, k, t+ 1) · p

Algorithm 2: Compute-graph: determine the overlap graph, hitting times
and shortest paths between every pair of nodes.

Require: overlap[j][j′] = w(j, j′) has been computed for all groups j and j′.

for j ∈ groups do

for j′ ∈ groups do

if overlap(j, j′) > 0 then

graph[j][j′]← H(overlap(j, j′), j.size, 0)

else

graph[j][j′]←∞

end if

end for

end for

Run an all-pairs shortest path algorithm [52] on graph to produce graph-

distance.
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Utility

Recall that each node i only tracks the membership of its neighbors. What hap-

pens if i receives gossip message containing a rumor r from an unknown gossip

object j? To be able to compute the utility of including r in a message to a given

neighbor, we will have nodes track the size and the connectivity between every

pair of gossip objects. Define an overlap graph for propagation of rumors across

gossip objects as follows:

Definition 3 An overlap graph G = (M,E) is an undirected graph on the set of

gossip objects, and E = {{j, j′} ∈ M × M : Oj ∩ Oj′ 6= ∅}. Define the weight

function w : M ×M → R as w(j, j′) = |Oj ∩Oj′| for all j, j
′ ∈ M . Let Pj,j′ be the set

of simple paths between gossip objects j and j′ in the overlap graph G.

We can now estimate the propagation time of a rumor by computing the ex-

pected hitting time on a path in the overlap graph G. A rumor may be diffused

via different paths in G; we will estimate the time taken by the shortest path.

Definition 4 Let P ∈ Pj,j′ be a path where P = (j = p1, . . . , ps = j′). The expected

delivery time on P is

D(P ) =

s−1
∑

k=1

H (|Opk|, w (pk, pk+1)) .

The expected delivery time from when a node i ∈ N includes a rumor r in an outgo-

ing message until it reaches another node in r.dst is

D(i, r) = min
j∈Ai

min
P∈Pj,r.dst

D(P ).

Algorithm 2 shows pseudo-code for computing the expected delivery time be-

tween every pair of groups.
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We can now define a utility function U to estimate the benefit from including

a rumor r in a gossip message.

Algorithm 3: Us(d, r, t): utility of sending rumor r from s to d at time t.

Require: compute-graphmust have been run.

distance←∞

for j ∈ d.groups do

distance← min{distance, graph-distance[j][r.dst]}

end for

if distance =∞ then

return 0.0

end if

return S(j.size, t− r.ts + dist)/j.size

Definition 5 The utility Us(d, r, t) of including rumor r in a gossip message from

node s to d at time t is the expected fraction of nodes in gossip object j = r.dst that are

still susceptible at time t′ = t− r.ts +D(s, r) when we expect it to be delivered. More

precisely,

Us(d, r, t) =
S(|Oj|, t

′)

|Oj|
.

Pseudo-code for approximating the utility function is shown in Algorithm 3.

The code is optimized by making use of the overlap graph computed by Algo-

rithm 2.
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Algorithm 4: Sample(u,R, L): sample L rumors without replacement from
R with probability proportional to u.

S← ∅ {The set of rumors in the sample}

sum←
∑

r∈R u(r)

Let r1, r2, . . . , rk be a random permutation of R.

z ← random(0, 1) {Uniformly random number in [0, 1)}

ζ ← 0

for ℓ = 1 to k do

ζ ← ζ + u(rℓ) · L/sum

if ζ ≥ z then

S← S ∪ {rℓ} and ζ ← ζ − 1.0

end if

end for

return S

The GO Heuristic

The following code is run by client on node s at time t.

• Recipient selection: Pick a recipient d uniformly at random from Ns.

• Content selection: Let R denote the set of unexpired rumors. Calcu-

late the utility u(r) = Us(d, r, t) for each r ∈ R using Algorithm 3. Call

Sample(u,R, L) (Algorithm 4) to pick L rumors at random from R so that

the probability of including rumor r ∈ R is proportional to its utility u(r).

Algorithm 4 for sampling without replacement while respecting probabili-

ties on the elements may be of independent interest. We include it here without

proof for the curious reader.
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Figure 3.1: The GO Platform.

In order to compute the utility of a rumor, each node needs to maintain com-

plete information about the overlap graph and the sizes of gossip objects. We

describe the protocol that maintains this state in section 3.3.3.

The cost of storing and maintaining such a graph may become prohibitive

for very large networks. We intend to remedy this potential scalability issue by

maintaining only a local view of the transition graph, based on the observation

that if a rumor belongs to distant gossip object with respect to the overlap graph,

then its utility is automatically low and the rumor could be discarded. Evaluat-

ing the trade-off between the view size and the benefit that can be achieved by

the above optimizations is a work in progress.

Consider the content selection policies for the RANDOM-STACKING and the

GO heuristic. A random policy will often include rumors in packets that have

no chance of being useful because the recipient of the packet has no “route” to

the group for which the rumor was destined. GO will not make this error: if it
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includes a rumor in a packet, the rumor has at least some chance of being useful.

We evaluate the importance of this effect in section 3.4.

3.2.4 Traffic Rates and Memory Use

The abovemodel can be generalized to allow gossip objects to gossip at different

rates. Let λj be the rate at which newmessages are generated by nodes in gossip

object j, and Ri the rate at which the GO platform gossips at node i.

For simplicity, we have implicitly assumed that all platforms gossip at the

same fixed rate R, and that this rate is “fast enough” to keep up with all the

rumors that are generated in the different gossip objects. Viewing a gossip object

as a queue of rumors that arrive according to a Poisson process, it follows from

Little’s law [64] that the average rate at which node i sends and receives rumors,

Ri, cannot be less than the rate λj of message production in j if rumors are to be

diffused to all interested parties in finite time with finite memory. In the worst

case there is no exploitable overlap between gossip objects, in which case we

require R to be at least maxi∈N
∑

j∈Ai
λj . Furthermore, the amount of memory

required is at least maxi∈N
∑

j∈Ai
O (log |Oj|) λj since rumors take logarithmic

time on average to be disseminated within a given gossip object.

The GO platform enforces customizable upper bounds on both the memory

use and gossip rate (and hence bandwidth), rejecting applications from joining

gossip objects that would cause either of these limits to be violated. Rumors

are stored in a priority queue based on their maximum possible utility; if the

rumors in the queue exceed the memory bound then the least beneficial rumors

are discarded.
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3.3 Platform Implementation

As noted earlier,GOwas implemented using Cornell’s Live Distributed Objects

technology, and inherits many features from the Live Objects system. For rea-

sons of brevity, we limit ourselves to a short summary. Each GO application

runs as a small component, coded in any of the 40 or so languages supported

by Microsoft .NET, and implements a standard interface defined by the Live

Objects framework. At run-time, an “end user” application can link to GO ap-

plications through simple library interfaces. Moreover, gossip objects can be

composed into graphs, with one object talking to another through typed end-

points over which events are passed. The resulting architecture is rich, flexible,

and quite easy to extend.

The GO platform runs on all nodes in the target system, and currently sup-

ports applications via an interface focused on group membership and multicast

operations. The platform consists of three major parts: the membership compo-

nent, the rumor queue and the gossip mechanism, as illustrated in figure 3.1.

GO exports a simple interface to applications. Applications first contact the

platform via a client library or an IPC connection. An application can then join

(or leave) gossip objects by providing the name of the group, and a poll rate R.

Note that a join request might be rejected. An application can start a rumor by

adding it to an outgoing rumors queue which is polled at rateR (or the declared

poll rate in the gossip object) using the send primitive. Rumors are received via

a recv callback handler which is called byGO when data is available.

Rumors are garbage collected when they expire, or when they cannot fit in

memory and have comparatively low utility to other rumors as discussed in
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section 3.2.4.

3.3.1 Bootstrapping

We bootstrap gossip objects using a rendezvous mechanism that depends upon

a directory service (DS), similar to DNS or LDAP. TheDS tracks a random sub-

set of members in each group, the size of which is customizable. When a GO

node i receives a request by one of its applications to join gossip object j, i sends

the identifier for j (a string) to the DS which in turn returns a random node

i′ ∈ Oj (if any). Node i then contacts i′ to get the current state of gossip object j:

(i) the setOj , (ii) full membership of nodes inOj , and (iii) the subgraph spanned

by j and its neighbors in the overlap graph G along with weights. If node i is

booting from scratch, it gets the full overlap graph from i′.

3.3.2 Gossip Mechanism

GO’s main loop runs periodically, receives gossip messages from other mes-

sages and performing periodic upcalls to applications, which may react by

adding rumors to the rumor queue. Each activity period ends when the plat-

form runs the GO heuristic (from section 3.2.3) to send a gossip message to a

randomly chosen neighbor. The platform then discards old rumors.
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Figure 3.2: Membership information maintained byGO nodes. The topol-
ogy of the whole system on the left is modeled by the node in
center as (i) the set of groups to which it belongs and neigh-
bor membership information (local state), and (ii) the overlap
graph for other groups, whose nodes are depicted as squares
and edges are represented by thick lines (remote state).

3.3.3 Membership Component

Each GO node i maintains the membership information for all of its neighbors,

Ni (local state). It also tracks the overlap graph G and gossip group sizes (remote

state), as discussed in section 3.2. Figure 3.2 illustrates an example of system-

wide group membership (left) and the local and remote state maintained by the

center node (right). The initial implementation of GO maintains both pieces of

state via gossip.

Remote state

After bootstrapping, all nodes join a dedicated gossip object j∗ on which nodes

exchange updates for the overlap graph. Let P be a global parameter that con-

trols the rate of system-wide updates, that should reflect both the anticipated

level of churn and membership changes in the system, and the O(log n) gossip
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dissemination latency constant. Every P log |Oj| rounds, some node i in j starts

a rumor r in j∗ that contains the current size of Oj and overlap sizes of Oj and

j’s neighboring gossip objects. The algorithm is leaderless and symmetric: each

node inOj starts their version of rumor rwith probability 1/|Oj|. In expectation,

only one node will start a rumor in j∗ for each gossip object.

Local state

GO tracks the time at which each neighboring node was last heard from; a node

that fails will eventually be removed from the membership list of any groups

to which it belongs. When node i joins or changes its membership, an upcall

is issued to each gossip object in Ai as a special system rumor. We rate-limit

the frequency of membership changes by allowing nodes to only make special

system announcements every P rounds.

3.3.4 Rumor Queue

As mentioned in section 3.2.4, GO tracks a bounded set of rumors in a priority

queue. The queue is populated by rumors received by the gossip mechanism

(remote rumors), or by application requests (local rumors). The priority of ru-

mor r in the rumor queue for node s at time t ismaxd∈Ni
Us(d, r, t), since rumors

with lowest maximum utility are least likely to be included in any gossip mes-

sages. As previously discussed, priorities change with time so we speed up the

recomputation by storing the value of argmax
d∈Ni

D(s, r).
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3.4 Evaluation

We evaluate the GO platform using a discrete time-based simulator. The focus

of our experiments is on quantifying the effectiveness of GO in comparison to

implementations in which each gossip object runs independently without any

platform support at all.

Our first experiment explores the usefulness of rumor stacking, and evalu-

ates the benefits of computing utility for rumors. We compare the three different

gossip algorithms (the GO heuristic, RANDOM and RANDOM-STACKING) run-

ning in a simple topology.

We then evaluate GO on a trace of a widely deployed web-management

application, IBM WebSphere. This trace shows WebSphere’s patterns of group

membership changes and group communication in connection with a white-

board abstraction used heavily by the product, and thus is a good match with

the kinds of applications for which GO is intended. We provide a detailed ex-

position of the WebSphere trace and its connectivity patterns in section 4.3.1, as

well as other topologies relevant to GO.

3.4.1 Rumor Stacking and Message Indirection

We evaluated the benefits of message indirection used by the GO heuristic us-

ing the topology shown in figure 3.4. The scenario constitutes a group j that

contains nodes s and d in which s sends frequent updates for d. Both nodes also

belong to a number of other gossip objects that overlap, so that they share some

set of common neighbors, in this case four. Assuming theGO platform at s only
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Figure 3.3: Rumor Stacking and Indirection. Different heuristics running
on the GO platform over the topology from figure 3.4. The
plots show the number of new rumors received by nodes in
the system over time (a) and as a function of messages sent (b).
A vertical line is drawn at the time when all 2,000 rumors have
been generated.
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Figure 3.4: The topology used in first experiment. Each edge corresponds
to a gossip group, themembers of which are the two endpoints.

sends one gossip message per round, the shared neighbors are in a position to

propagate messages intended for other gossip objects.

We measured the speed of propagation of messages in group j using our

simulator. All nodes simulate the GO platform with a message rate of 1 mes-

sage per round, using one of the three gossip algorithms discussed earlier. Dur-

ing each time step until time 400 (vertical line), node s generates a new rumor

for each group in As, after which rumor generation stops. We assume that 15

rumors can be stacked in each packet, and that nodes can fit at most 100 rumors

in memory.

Figure 3.3 shows the total number of distinct rumors node d has received

for group j. The benefits of rumor stacking are evident when one compares the

results of the RANDOM-STACKING algorithm to the RANDOM one. RANDOM-

STACKING diffuses rumors more than 5 times faster than the single-message

RANDOM.

Next, compare the GO heuristic results to those of the RANDOM-STACKING

algorithm. The GO heuristic delivers rumors efficiently: nodes are on average

only 11.5 rumors behind an optimal delivery, compared to 460 for RANDOM-

STACKING and 1,460 for RANDOM.
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Figure 3.5: WebSphere trace: The number of new rumors received by
nodes in the system and the number of messages sent (a), also
plotted as a ratio of new rumors per message over time (b).
The nodes using the random heuristics gossip per-group every
round, whereasGO sends a single gossip message.
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3.4.2 Real-World Scenarios

As noted earlier, IBM WebSphere [7] is a widely deployed commercial applica-

tion for running and managing web applications. A WebSphere cell may con-

tain hundreds of servers, on top of which application clusters are deployed. Cell

management, which entails workload balancing, dynamic configuration, inter-

cluster messaging and performancemeasurements, is implemented by a form of

built-in whiteboard, which in turn interfaces to the underlying communication

layer via a pub-sub [50] interface. To obtain a trace, IBM deployed 127 Web-

Sphere nodes constituting 30 application clusters for a period of 52 minutes,

and recorded topic subscriptions as well as the messages sent by every node.

An average process subscribed to 474 topics and posted to 280 topics, and there

were a total of 1,364 topics with at least two subscribers and at least one pub-

lisher. The topic membership is strongly correlated, in fact 26 topics contain at

least 121 of the 127 nodes. On the other hand, none of the remaining topics con-

tained more than 10 nodes. Further details about the WebSphere trace and its

connectivity patterns are in section 4.3.1.

We used the WebSphere trace to drive our simulation by assigning a gossip

group to each topic. All publishers and subscribers for the topic are members

of the corresponding gossip group. We limited the memory and bandwidth

requirements by expiring rumors 100 rumors after they were first generated.

Again, we compare the GO heuristic with RANDOM and RANDOM-STACKING.

However, in contrast to the experiment of section 3.4.1, in which the GO plat-

form itself used the specified stacking policy, this WebSphere experiment is

slightly different: it compares a simulated “port” of WebSphere to run overGO

with a simulation of WebSphere running over independent gossip groups that

67



exhibit the same membership and communication patterns, but do not bene-

fit from any form of platform support. To emphasize that these group policies

are not identical to RANDOM-STACKING and RANDOM, as used internally by

the GO platform itself in the first experiment, we designate the policies as WS-

RANDOM-STACKING and WS-RANDOM in what follows.

We expect the naı̈ve approaches to disseminate rumors faster than GO be-

cause eachWebSphere group is operated independently and in a ”greedy” man-

ner. As a consequence, each node sends one gossip message per group per

round, as opposed to only one message per round as theGO platform does. As

can be seen in figure 3.5(a), the delivery speed of the GO platform is 6.7% per-

cent lower on average than the naı̈ve WS-RANDOM-STACKING approach. GO,

however, beats WS-RANDOM by a factor of 2. An even bigger win for GO can

be seen in figure 3.5(b), which shows the number of new rumors delivered ver-

sus the number of messages exchanged. TheGO platform sends 3.9 times fewer

messages than the naı̈ve approaches, thus keeping bandwidth bounded, while

disseminating rumors almost as fast.

At the end of the trace, the total number of rumors received by all nodes was

8% lower when using GO than WS-RANDOM-STACKING, meaning that some

rumors had not reached all intended recipients. We traced this loss to a specific

point in the execution at which WebSphere generates a burst of communica-

tion, exceeding the GO-imposed bandwidth limit. One reasonable inference is

that such loss is an unavoidable consequence of our approach, in which a sin-

gle platform handles communication on behalf of all gossip groups. However,

it is interesting to realize that the WebSphere traffic burst was brief and that

averaged over even a short window, need not have overwhelmedGO. This ob-
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servation is motivating us to explore dynamically adjusting the platform gossip

rate to cope with bursty senders, but in ways that would still respect operator-

imposed policies over longer time periods.

3.4.3 Discussion

There are two take-awaymessages from the first experiment. First, rumor stack-

ing is inherently useful even when using RANDOM-STACKING without a utility-

driven rumor selection scheme. Nonetheless, we see a substantial gain when

using the GO heuristic to guide the platform’s stacking choices. Although not

reported here, we have conducted additional experiments that confirm this find-

ing under a wide range of conditions. Second, if processes exhibit correlated

but not identical group membership, then there may often be indirect paths that

can be exploited using message indirection. GO learns these paths by explor-

ing membership of nearby groups, and can then ricochet rumors through those

indirectly accessible groups. The RANDOM-STACKING policy lacks the informa-

tion needed to do this. While the topology in the first experiment is deliberately

adversarial, it is also extremely simple. For this reason, we believe that patterns

of this sort may be common in the wild, where correlated group membership is

known to be a pervasive phenomenon.

The WebSphere experiment supports our belief that theGO platform is able

to cope with real-world message dissemination at a rate close to that of a naı̈ve

implementation without losing the fixed bandwidth guarantee discussed in

the introduction, and in fact using substantially fewer messages than a non-

platform approach.
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We believe that the scenarios we evaluated illustrate the potential benefit of

the GO methodology in a reasonably general way. If a large number of groups

overlap at a single node, conditions could arise that would favor theGO heuris-

tic to an even greater degree than in our examples. For example, this would be

the case if a large number of groups overlap, generating high volumes of gos-

sip traffic, and yet the pattern of membership is such that relatively few rumors

are legitimate candidates for stacking in any particular gossip message. GO has

the information to optimize for such cases, including only high-value rumors;

random stacking would tend to fill packets with useless content, missing the

opportunity.

3.5 Future Directions

Recall thatGO nodes maintain membership of all groups to which they belong.

To address scalability concerns, large groups can likely be fragmented at a cost

of higher latency.

In ongoing work, we are changing the GO membership algorithm to bias it

in favor of accurate proximal information at the expense of decreased accuracy

about membership of remote groups. The rationale for this reflects the value of

of having accurate information in the utility computation. As observed earlier,

rumors have diminishing freshness with time, which also implies that the ex-

pected utility of routing a rumor very indirectly is low. In effect, a rumor sent

indirectly still needs to reach a destination quickly if it is to be useful. We conjec-

ture that the GO heuristic can be proved to be insensitive to information about

groups and membership very remote (i.e., several hops from a sender node),
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but highly sensitive to what might be called proximal topology information. It

would follow that proximal topology suffices.

At present, GO rejects gossip join requests if the resulting additional gos-

sip load would overflow its rumor buffers. One might imagine a more flexible

scheme that would allocate rumor buffer space among applications in an opti-

mized manner, so as to accommodate applications with varied data production

rates. If we then think about information flow rates within individual groups,

and compare this with those achievable using theGO (where groups carry traf-

fic for one-another), it would be possible to demonstrate an increase in the peak

data rates when using GO relative to systems that lack this cooperative behav-

ior.

A second direction for future investigation concerns other potential uses for

GO. As noted earlier, our near term plan is to extend GO so that it can support

a wider range of gossip styles. Beyond this, we are considering hosting non-

gossip protocols “over”GO, tunneling their communication traffic throughGO

so as to gain the properties of those protocols (such as consistency, tolerance of

application-level Byzantine faults, etc.) while also benefiting from GO’s simple

worst-case communication loads.

Yet a third open topic concerns security. The GO rumor stacking scheme

does not currently provide true performance isolation: an aggressive applica-

tion may be able to dominate a less aggressive one, seizing an unfair share of

stacking space. A thorough exploration of this form of fairness, and of other

security issues raised by GO, would represent an appealing subject for further

study.
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In summary,GO is a work in progress. While gossip protocols for individual

applications are a relatively mature field, it is interesting to realize that by build-

ing a platform – an operating system – to support multiple gossip applications,

one encounters such a wide range of challenging problems. We conjecture that

practitioners who use gossip aggressively will encounter these problems too,

and that in the absence of good solutions, might conclude that gossip is not as

effective a technology as generally believed. Yet there seems to be every reason

to expect that these problems can be solved. By doing so we advance the the-

ory, while also enlarging the practical utility of gossip in large data centers and

WAN peer-to-peer settings, where gossip seems to be a good fit to the need.

3.6 Related Work

The pioneering work by Demers et al. [49] used gossip protocols to enable a

replicated database to converge to a consistent state despite node failures or

network partitions. The repertoire of systems that have since employed gossip

protocols is impressive [34, 84, 82, 50, 47, 76], although most work is focused on

application-specific use of gossip instead of providing gossip communication as

a fundamental service.

3.7 Conclusion

The GO platform generalizes gossip protocols to allow them to join multiple

groups without losing the appealing fixed bandwidth guarantee of gossip pro-

tocols, and simultaneously optimizing latency in a principled way. Our heuris-
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tic is based on the observations that a single IP packet can contain multiple ru-

mors, and that indirect routing of rumors can accelerate delivery. The platform

has been implemented, but remains a work in progress. Our vision is that GO

can become an infrastructure component in various group-heavy distributed

services, such as a robust multicast or publish-subscribe layer, and an integral

layer of the Live Distributed Objects framework.
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CHAPTER 4

AFFINITY

In this chapter, we investigate the level of affinity present in a number of

different data sets and models, by which we mean a high degree of pairwise

overlap between groups. Group affinity depends on what a group is supposed

to abstract, and the underlying process for how these groups are populated by

users or processes.

We will consider two general categories of group abstractions.

• Social interactions: On the one hand, we have data sets in which groups

contain real people, and affinity between groups is determined by processes

that depend on the attributes of the users, such as interests, preferences,

social interactions, and so forth.

• System communication channels: On the other hand, we consider data

sets in which a group denotes a communication channel of a system, and

affinity between groups is driven by properties of the system. For instance,

a system that replicates state across different components could create a

group to handle the replication, and is thus bound to have groups with

similar or identical membership.

We create two models, one for each category of group abstractions, each of

which capture some statistics or process believed to influence group member-

ship among people or in real systems. From a scientific standpoint, models like

these allow us to get insights by exploring fundamental processes underlying

reality in isolation. From an engineering standpoint, these models provide a
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means to experiment with a system at arbitrary scales and to identify opportu-

nities for improvement within the system.

Understanding group affinity has clear practical benefits. The optimiza-

tions used in both Dr. Multicast (MCMD) and the GO platform depend on the

amount of overlap between groups. In MCMD, merging groups with similar

membership into single physical IPMC group saves the limited IPMC resources

at the cost of filtering unwanted packets. In GO, indirection opportunities di-

rectly correlate with the size of the overlap between pairs of groups. Oppor-

tunities to exploit group similarity arise in various other types of work, such

as general publish-subscribe systems [50], dissemination overlays [56] and de-

duplication of Internet traffic [30, 29].

Our road map for this chapter is as follows. We will first explore the prop-

erties and perform some analysis of the data sets and models for social interac-

tions in sections 4.1 and 4.2, and for system communication channels in sections

4.3 and 4.4. We then investigate the level of affinity present in the different data

sets and models in section 4.5, posing and answering the question “How ran-

dom are group overlaps?”. We will formalize the optimization problem present in

MCMD,and derive and evaluate a heuristic for it on the data sets and models

in sections 4.6. We will discuss some related work in section 4.7, and finally

conclude in section 4.8.

The contributions of this chapter are the following.

• We present and analyze data sets and models for group overlap for both

social groups and systems communication channels.

• We investigate the level of affinity present in these data beyond what
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would exist by chance.

• We formalize the optimization problems in MCMD, and evaluate a novel

algorithm on the data sets and the models.

4.1 Social Data Sets

We obtained a number of real-world data sets in which human interactions

can be abstracted as groups and users. The data sources are Yahoo! Groups

users, Amazon.com product recommendations, Wikipedia editors and Live-

Journal communities. For each data set, we will produce a bipartite graph be-

tween the sets of groups and users in which group membership is denoted by

an edge between a user and a group.

Understanding the patterns of overlap in these data sets is useful to systems

design, since all systems ultimately interface with humans at some level. Trends

or attributes associated with human behavior at higher levels of a system will

trickle down to the system’s lower layers, where it influences the communica-

tion patterns of the components. For instance, the PNUTS data storage system

at Yahoo! [45] has a publish/subscribe layer that maintains and replicates state

geographically. If PNUTS were used to store Yahoo! Groups, then the commu-

nication patterns of the publish/subscribe layer would be heavily influenced by

the human behavior evident in the data set.
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Figure 4.1: Y-GROUPS: complementary CDF for group size (left) and user
degree (right).

4.1.1 Yahoo! Groups

Yahoo! Groups is an on-line community-driven forum [24]. Members can sub-

scribe to groups and receive posts and updates to those groups via e-mail or

using a web interface. Groups tend to be either discussion venues or announce-

ment lists, and some groups are moderated.

The Y-GROUPS data set contains 640,000 groups and 1 million users and

edges corresponding to group membership [21]. There are 15 million edges

in the graph.

Unfortunately, figure 4.1 indicates that the trace does not contain any groups

with more than 200 members. The cap may stem from artificial limits imposed

when the trace was gathered.
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Figure 4.2: WIKIPEDIA: complementary CDF for group size (left) and user
degree (right).

4.1.2 Wikipedia Editors

Wikipedia [23] is an on-line encyclopedia that can be edited freely by anyone.

We consider the edit history of all articles on Wikipedia by registered users

through April 1st, 2007 [46]. The edits performed by unregistered users (i.e.,

anonymous IP addresses) were discarded. The nodes of the bipartite Wikipedia

graph WIKIPEDIA constitutes 430,000 registered editors and 3.4 million articles,

and we place an edge between an editor and an article if the editor has ever

edited the article. There are 23 million edges in the Wikipedia graph.

It should be noted that the users who edited the greatest number of articles

are robots, programs made to automatically adjust the style and references of

Wikipedia pages, and to quickly revert obvious vandalism.
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Figure 4.3: AMAZON: complementary CDF for product degree (left) and
user degree (right).

4.1.3 Amazon.com Recommendations

Amazon.com is a large, popular on-line retailer for books, DVDs, electronics,

apparel, and more [22]. Customers can rate and write reviews for the items they

purchase, conveying information about product quality and service to other po-

tential customers. The bipartite graph AMAZON of product reviews contains

between 400,000 products and reviews by over 1.5 million users through July

2005 [63]. The data set contains 64 million reviews, represented by edges in the

graph.

4.1.4 LiveJournal Communities

LiveJournal is a large on-line web-site where users can keep an electronic diary,

blog or journal. Users can create “communities” and identify to which of those

communities they belong. Joining a community gives a user the right to write

new posts in that community and the access to other people’s posts is improved.
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Figure 4.4: LIVEJOURNAL: complementary CDF for community size (left)
and user degree (right).

We obtained a snapshot from 2005 [32] of 390,000 communities populated by 1.9

million self-identified users. We processed the snapshot to produce a bipartite

graph LIVEJOURNAL of edges between users to communities which contains

16.9 million edges.

4.2 Modeling Social Interactions

We wish to create a model for how humans join groups such that we match

important statistics observed in real-world data such as the data sets presented

above. Let us begin by describing a common pattern that arises in social data,

namely power-laws.
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4.2.1 Power-law Distributions

A random variable X taking integer values 1, 2, 3, . . . follows a power-law dis-

tribution if Pr[X = k] ∝ k−α for some constant α > 0. The distribution is

heavy-tailed, meaning that tail is heavier than the exponential distribution (i.e.,
∫

∞

0
xβPr[X = x]dx diverges for some β > 0).

Power-law distributions are ubiquitous in nature [71, 72, 66], where the value

of α is usually observed to be between 2.0 and 3.0 with few exceptions [44].

Power-law distributions have also been observed in various social graphs, for

example the the number of routers with a given degree k in the inter-domain

topology on the Internet is roughly k−2.48 [51], the fraction of web pages with

k in-links is roughly k−2.1 [61, 36], and the popularity of RSS feeds also follows

a power-law with α = 2.37 [65]. In fact, there was a “power-law craze” for a

while during which people even looked at the social network of Marvel comic

characters [26].

Letting y = cx−α for some constant c, we see that log y = −α log x + log c is

linear and thus the PDF of a power-law distribution has a linear fit on a log-log

plot. The complement of the CDF is also linear in log-log space for the same

reason, since

Pr[X ≥ x] =

∫

∞

x

cx−αdx =

[

c

−α
x−(α−1)

]∞

x=x

=
c

α
x−(α−1).

Consider the complementary CDF for the social data sets from WIKIPEDIA,

AMAZON and LIVEJOURNAL presented above in figures 4.2, 4.3 and 4.4. For

one to two orders of magnitude on the x-axis, the curves appear to follow a

power-law (the fitted lines) decently, and then have an exponential drop-off.

What might generate this behavior for such different types of data?
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4.2.2 Mutual Interest Model

Much research effort has been put into understanding what causes power-laws,

and why they arise in so many different domains [66]. One of the best known

generative models for graphs with power-laws degree distributions is the pref-

erential attachment model by Barabási and Albert [36]. In the model, a graph is

constructed by gradually introducing new nodes, and each new node builds an

edge to an earlier node with probability proportional to that node’s degree. The

idea behind the model is that “the rich get richer”. The number of vertices with

degree k is roughly proportional to k−3 [71]. An exponent between 2 and 3 can

be produced by an algorithm which mixes between a preferential attachment

phase and a phase in which nodes connect to other nodes uniformly at random

[27].

We devised what we call the MUTUAL-INTEREST model, based on preferen-

tial attachment processes, to generate group memberships such that both group

and user popularity follow power-laws as suggested by the data sets. The origi-

nal preferential attachment model produces graphs with a single type of nodes,

whereaswe are interested in generating a bipartite graphwith users and groups.

We start with a single group with one user, and then repeat the following

until the desired number of users and groups is reached. The probability pa-

rameters p and q respectively control the density of the graph, and the desired

fraction of users to groups.

• Pick a user u among current users with probability proportional to their

degree (number of group memberships) as in the preferential attachment

model.
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Figure 4.5: MUTUAL-INTEREST: complementary CDF for group size (left)
and user degree (right).

• Similarly, pick a group g among current groups with probability propor-

tional to the group size (number of users).

• With probability pq, add a new user u′ and make u′ join g.

• With probability p(1− q), add a new group g′, and make u join g′.

• Otherwise, with probability 1− p, make u join g.

The intuition is that users prefer popular groups, and new groups are more

likely to interest those with many interests.

The MUTUAL-INTEREST model is composition of several processes, so even

though it has been proven that the preferential attachment model produces a

power-law [71], this proof does not carry over to the MUTUAL-INTEREST model

unchanged. However, in figure 4.5 we see that a run of the model with density

p = 1
10

and q = 1
2
generates a graph which produces good fits to power-laws for

both user and group popularity.
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4.3 Systems Data Set

Understanding the social aspects of group subscriptions is helpful to systems

design because ultimately humans influence the way systems are used. How-

ever, the systems we consider in this thesis, Dr. Multicast andGO, are designed

to accommodate and improve existing systems. As such, understanding of the

communication patterns of real-world systems has more relevance and applica-

bility to our optimization algorithms than speculations about hypothetical sys-

tems based on the social data sets presented before.

Unfortunately, obtaining traces from real-world applications is not an easy

task. The key sources for such information are usually industry players who

face intense pressure on not releasing data outside the company due to compe-

tition and privacy concerns, and because the financial return of their investment

may be limited.

However, we did obtain a trace of the communication patterns of a large in-

dustrial system, IBMWebSphere. We have already used this trace for evaluation

of our systems in chapters 2 and 3. In what follows, we describe the details of

the trace and the bipartite graph of its group membership.

4.3.1 WebSphere Bulletin Boards

We obtained a trace from IBM WebSphere Application Server, a popular com-

mercial distributed system for managing web applications [7]. As we men-

tioned for the evaluation ofGO in section 3.4, IBM deployed 127WAS processes

constituting 30 application clusters for a period of 52 minutes in January 2009,

84



100

101

102

103

100 101 102 103

F
re

qu
en

cy
 (

C
C

D
F

)

Degree

Websphere groups

100

101

102

103

100 101 102 103

F
re

qu
en

cy
 (

C
C

D
F

)

Degree

Websphere users

Figure 4.6: WEBSPHERE: complementary CDF for group size (left) and
user degree (right).

and recorded the publications and group subscriptions for each process. There

were 2,886 logical groups with both subscribers and publishers, and 1,364 of

these groups were used to disseminate messages during the tracing period.

We produced a bipartite graph WEBSPHERE using the trace by including all

subscriptions to the non-idle groups even if processes later decided to unsub-

scribe. Note that the graph does not contain information about publishers. The

graph contains 5,789 subscriptions by 127 processes to 1,364 logical groups.

The publishing and subscription matrices of processes to logical groups in

figure 4.3.1 show that interests are highly structured. The spatial distribution of

logical groups according to their number of subscribers (x-axis) and publishers

(y-axis) in figure 4.8 suggests that there are four types of communication pat-

terns in the trace: few-to-few (F2F), few-to-many (F2M), many-to-few (M2F),

and many-to-many (M2M). Here, few means no more than 10 processes, and

many implies all 127 processes except at most 10.

Interestingly, each group in the trace fits one of the four categories. Some of
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Figure 4.7: WEBSPHERE: Publication (a) and subscription (b) matrices.
Each dot represents a subscriber or publisher on a specific
group. The traffic rate (bottom) on groups in the trace is ex-
pressed both in messages/sec (left) and bytes/sec (right).

Figure 4.8: WEBSPHERE: Communication patterns. A marker is plotted
for each group, in the spatial location representing its number
of subscribers and publishers.
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this behavior can be directly attributed to design decisions made in particular

components of WAS — some of the M2F groups, for instance, were used for

gathering statistical reports — but other behavior is harder to characterize.

Unlike the previous data sets in which connectivity is directly influenced by

user interactions, the WEBSPHERE data set is produced by the components of an

actual system. The distinction has important consequences, since it is reasonable

to expect subscription patterns made by mechanical components to look more

homogeneous and hierarchical than those of their user driven counterparts. We

will address this issue in our modeling work.

4.4 Modeling Systems Communication Channels

We saw that the WEBSPHERE trace consists of components that produce highly

correlated subscription patterns. Several factors in systems design contribute

to high group affinity. In many data centers, multicast (or publish/subscribe)

is used to replicate data so that load can be spread over multiple computing

nodes. Since many applications are built frommultiple subsystems, for example

a web-page generator as a front-end to an inventory service, a pricing service, a

popularity ranking service, etc., we end up with a set of components, identically

replicated on each node where the application is cloned.

Some distributed systems have multicast or publish/subscribe communica-

tion occurring at every layer. An example is the Live Objects framework [73],

developed at Cornell, which produces hierarchically structured applications or

documents. Each document is a set of objects, and each object can in turn consist

of sub-objects, and so forth. The idea is that changes to any object reflected in
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all instances in a synchronous fashion, for instance a string of text written in a

notepad object should appear in all documents that embed the object. The gos-

sip object mechanism from chapter 3 was created for Live Objects, and provides

it with an optimized communications channel to synchronize object contents

over wide-area networks.

4.4.1 Hierarchical Components

To model the high similarity and hierarchical structure in components of a sys-

tem like Live Objects, we start with a simple binary tree. Each node x in the tree

corresponds to a component, and each component must synchronize itself with

all users who use that component. When a user picks node x, he or she needs to

instantiate x as well as all sub-components in the subtree of x.

The selection process is as follows. Given a binary tree T with n = 2h+1 − 1

nodes, a user first picks a level in the tree between 0 and h uniformly at random,

and then picks a node in T at that level uniformly at random. We call this the

HIERARCHY model.

Let S(x) for x ∈ T denote the subtree spanned by x, i.e., the set of nodes who

have x as an ancestor (including x itself).

Theorem 1 Each user x belongs to
2n

log(n + 1)
− 1 components in expectation.

Proof 1 We have

E[|S(x)|] =
h
∑

i=0

(

2i+1 − 1
) 1

h+ 1
=

2h+2 − 2− (h+ 1)

h+ 1
=

2n

log(n+ 1)
− 1.
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Theorem 2 For each pair of users x and y, the expected number of overlapping compo-

nents O(x, y) between the users is

E[O(x, y)] = Θ

(

n

log2 n

)

.

Proof 2 A binary tree of height h (with levels starting from 0) has 2h−i nodes at level i.

Define L : T → {0, 1, . . . , h} to be the level of vertex x in the tree T . DefineO(x, y)

to be the overlap size of the subtrees spanned by x, y ∈ T , that is |S(x) ∩ S(y)|. We

note that in a tree,

|S(x) ∩ S(y)| =











min{|S(x)|, |S(y)|} if S(x) ∩ S(y) 6= ∅

0 otherwise.

Let x and y be two nodes in a tree of size h, chosen by the user selection process

above independently. We have

E[O(x, y) | L(x) = a] =
a
∑

i=0

(

2i+1 − 1
) 2a−h

h+ 1
+

h
∑

i=a+1

(

2a+1 − 1
) 2i−h

h+ 1

=
2−h

h+ 1

(

22a+1 − 2a +
(

2a+1 − 1
) (

2h+1 − 2a+1
))

=
2−h

h+ 1

(

2a + 2a+h+2 − 22a−1 − 2h+1
)

Since P[L(x) = a] = 1/(h+ 1) we get

E[O(x, y)] =

h
∑

a=0

E[O(x, y) | L(x) = a]P[L(x) = a]

=
2−h

(h+ 1)2

(

22h+3 − 2

3
+ 2h+1 − 1 + 2h+2

(

2h+1 − 1
)

− (h+ 1)2h+1

)

=
2−h

(h+ 1)2

(

22h+3 −
22h+3

3
−

5

3
− h2h+1 − 2h+1 − 2h+1

)

=
1

(h+ 1)2

(

2

3
2h+3 −

5

3
2−h − 2(h+ 2)

)

.

Then lim
h→∞

(h+ 1)2E[O(x, y)]

n
=

8

3
so E[O(x, y)] = Θ

(

n

log2 n

)

.
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Figure 4.9: HIERARCHY: PDF of component degrees.

We ran the HIERARCHY model with 213 = 8192 components in a binary tree,

and equally many independent users. The user degree distribution is such that

roughly 1
13

fraction of the users has degree 2d − 1 for d = 1, 2, . . . , 13, as antic-

ipated. Figure 4.9 shows the PDF of the component degree distribution in the

graph. The mean is 1, 246 ± 15.3 which is close to the value of 214

13
− 1 ≃ 1, 259

predicted by Theorem 1.

4.5 Analysis

Unfortunately, data becomes hard to analyze visually at large scales. For exam-

ple, if we were to draw a single pixel for every pair of groups in the WIKIPEDIA

data set, we could only display 0.00003% of the data on a 1600×1200 pixel mon-

itor. Algorithms used in data analysis often have super-linear running times,

which naturally is also prohibitive at large scale. These obstacles have spawned
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the growing field of data mining, which is the process of extracting informa-

tion and non-obvious patterns from vast quantities of data. We will employ

some data mining techniques and optimizations to help understand the degree

of affinity present in the data sets and models.

4.5.1 Visualizing Affinity

First, we will show pairwise overlaps between groups in small samples of the

data sets. We sample up to 10,000 groups uniformly at random, and include

each user that belong to some group in the sample such that all edges incident

on the groups are retained.

Let Gj denote the set of users in group j.

Definition 6 The similarity of two groups j, j′ is defined as

SIM(j, j′) =
|Gj ∩Gj′|

max{|Gj|, |Gj′|}
.

Various similarity metrics are used in different contexts, for example

|Gj ∩Gj′|

min{|Gj|, |Gj′|}
,
|Gj ∩Gj′|

|Gj ∪Gj′|
or cosine similarity to list a few. For our purposes,

using the max-metric is convenient.

The affinity matrices in figures 4.10, 4.11 and 4.12 show the degree of overlap

between pairs of groups in the samples. Groups are sorted by their size from

left to right, and from bottom to top. The origin (0, 0) is in the bottom-left part

of the graph. The color of each cell (j, j′) denotes the value of SIM(j, j′) such

that white means no overlap, and black means that SIM(j, j′) = 1, which implies
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Table 4.1: Statistics for the bipartite graphs of the data sets and models.

Data set or model # groups # users # edges

Y-GROUPS 638,124 999,744 15,205,016

WIKIPEDIA 3,389,252 432,533 22,863,096

AMAZON 402,724 1,555,170 6,359,182

LIVEJOURNAL 385,959 1,877,738 16,932,231

MUTUAL-INTEREST model1 81,991 400,000 5,280,760

WEBSPHERE 1,364 128 5,789

HIERARCHY model 8,191 8,192 10,210,872

that the two groups fully overlap. The color spectrum we use is the following,

ranging from no overlap (left) to full overlap (right).

The intensity of the right end of the spectrum is biased to ensure that every

non-zero similarity value is visible on the affinity matrices.

The social data sets and models in figures 4.10 and 4.11 are substantially

sparser in terms of non-zero pairwise overlap than the systems data sets and

models in figure 4.12. The HIERARCHY model produces high group affinity, as

predicted by theorem 2. The large area of minor overlaps visible in the AMAZON

trace are largely due to a singleton overlap with the user named “A Customer”,

which is presumably a default user identifier rather than a person responsible

for over 123,000 product recommendations.
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(a) WIKIPEDIA

(b) AMAZON

Figure 4.10: Affinity matrices for 1,000 group samples from the
WIKIPEDIA and AMAZON data sets.
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(a) LIVEJOURNAL

(b) MUTUAL-INTEREST model

Figure 4.11: Affinity matrices for 1,000 group samples from the LIVEJOUR-
NAL social data set and the MUTUAL-INTEREST model.
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(a) WEBSPHERE

(b) HIERARCHY model

Figure 4.12: Affinity matrices for 1,000 group samples from the systems
data set WEBSPHERE and HIERARCHY model.
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4.5.2 Baseline Overlap

We saw in the previous subsection that the affinity matrices produced by social

models have similar characteristics, sparse with higher similarity at for large

degrees, but different from the systems data set and HIERARCHY model which

appear more structured and to embody higher levels of group overlap. Several

interesting questions pop to mind. How random are these graphs? Is there a

greater deal of preferential attachment associated with the large groups in the

social data sets? Is the affinity evident in the systems graphs due to the low

number of users and/or groups?

In this section, we will determine the extent of which group overlap arises

by chance in the different data sets and models. To do so, we will need to define

which random graphs can act as a baseline in this context. The first approach

might be to generate a random graph that has the same number of users and

groups as the graph whose randomness we wish to evaluate. One might even

fix a distribution for the degree distributions, such as the power-law distribution

from section 4.2.1, and keep the number of edges the same. The first problem

with this approach is that real-world degree distributions are hard to emulate

[71]. The second problem is that for group similarity the probability space in

which we are interested should not include randomizing user or group degree

information, but rather only the (user, group) pairs.

Our SPOKES model solves this conundrum. Informally, we take a bipartite

graph and rewire its edges such that the node degrees are the same. Given a

bipartite graph Γ = (A∪B,E) of users A and groups B, we define SPOKES(Γ) =

(A∪B, Ê)where the random edge set Ê satisfies Ê ⊆ {(a, b) : a ∈ A, b ∈ B} such

that degÊ(v) = degE(v) for v ∈ A∪B. We now have a random set of (user, group)
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pairs based on the input graph without tampering with the degree distributions

or making other changes.

Define NΓ(v) to be the set of neighbors of node v ∈ Γ for a graph Γ. Let

SIMΓ(j, j
′) =

|NΓ(j) ∩NΓ(j
′)|

max{|NΓ(j)|, |NΓ(j′)|}
.

Take a bipartite graph Γ = (A ∪ B,E) and produce Γ̂ = SPOKES(Γ). Note

that NΓ(j) is the set of users in group j ∈ B. For every pair of groups j, j′ in

B, we want a function∆(j, j′) to quantify howmuch similarity there is between

those groups beyond what arises randomly (i.e., in the SPOKES variant). We will

consider the difference between the similarity measures,

∆(j, j′) = SIMΓ(j, j
′)− SIMΓ̂(j, j

′).

The function could also be defined as the ratio between the quantities, as an

ℓp norm or in various other ways. We decided to keep the definition simple to

maintain a concise visual representation of group affinity. Note that a positive

value of ∆(j, j′) means that a data set produces more overlaps than a random

model would.

In figures 4.13, 4.14 and 4.15 we provide a visual reference to the ∆ function

for the data sets and models discussed earlier. We experimented with multiple

trials of the SPOKES randomization process, and show the output of a typical

run. Intuitively, a cell denotes the average value of ∆ for groups of similar

size. More specifically, the color of each cell (d, d′) in the color plot corresponds

to the average value of ∆(j, j′) over a random sample of at most 50 groups j

and j′ such that |NΓ(j)| ∼ d and |NΓ(j
′)| ∼ d′, that is d

1+ε
≤ |NΓ(j)| < d and

d′

1+ε
≤ |NΓ(j

′)| < d′. We set the value of ε to be 0.1, producing an exponential
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(b) AMAZON

Figure 4.13: ∆ plot for the WIKIPEDIA and AMAZON graphs.
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(b) MUTUAL-INTEREST model

Figure 4.14: ∆ plot for the Y-GROUPS and MUTUAL-INTEREST model
graphs.
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(b) HIERARCHY model

Figure 4.15: ∆ plot for the WEBSPHERE and HIERARCHY model graphs.
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grid of size up to roughly 128×128 on log-log scale for the data sets. If no groups

fit the size range, the color of the cell is white.

The figures indicate that the social data sets do not have any general overlap

structure beyond that of the SPOKES baseline. In other words, the general group

affinity present in those data sets appears to have a good fit with a random

model. This does not imply that there are no pairwise overlaps that can be

clustered (see section 4.6.4), but that overlaps beyond random allocation may be

relatively rare independently of group sizes. Unlike the other social data sets,

the MUTUAL-INTEREST model in figure 4.14 shows an increase in the similarity

between large groups. This might imply that the generative procedure for the

model needs to be refined to reduce mixing between high degree nodes. The

model might also linger too long in its early phases, populating the first few

groups with most of the first few users because of the density constraints.

Both systems graphs, that is the WEBSPHERE data set as well as the HIERAR-

CHY model in figure 4.15, have a significantly higher level of affinity compared

to a random baseline. It should be pointed out that the figure has a wider color

range, ranging from [−1, 1] since most ∆ values in the plots for the systems ex-

ceed the upper limit of 0.1 imposed on the social graphs.

Table 4.2 shows the three most significant digits of ∆ averaged over all cells

of each color plot. Numbers close to zero imply that the data set or model does

not have significant overlap structure beyond a random graph; numbers close

to 1 imply that the graph is very structured, and a number close to −1 would

imply that the graph has less overlap structure than that given by a randomly

generated graph. We notice that the social data sets and MUTUAL-INTEREST

model have values close to zero, whereas the WEBSPHERE model and the HI-
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Table 4.2: Value of ∆ averaged over all cells of each color plot.

Data set or model Avg. ∆ value

Y-GROUPS 0.000

WIKIPEDIA -0.004

AMAZON 0.031

MUTUAL-INTEREST 0.006

WEBSPHERE 0.284

HIERARCHY 0.358

ERARCHY model both display significantly higher values, implying structure

beyond the SPOKES baseline.

The take-away from this section is that group overlap in social data sets is

close to random, whereas for systems data sets and models it appears to be

more structured and quite substantial. While only a few data points have been

presented for reasons already explained, it is reasonable to expect similar con-

clusions arising with other data sets in future work.

4.6 Dr. Multicast

In this section, we formalize the optimization problem that arises in Dr. Multi-

cast, devise a heuristic to solve it and and evaluate it on the data sets andmodels

we have presented so far.

Recall from chapter 2 that the MCMD leader can map network-level IP mul-

ticast addresses to some of the application-level groups in the system, and com-
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mand others to communicate via unicast. The mapping must adhere to the

acceptable-use policy, but should also achieve scalability goals:

• Minimize the number of network-level IPMC addresses. NICs, routers and

switches do not scale in the number of IPMC addresses, as discussed ear-

lier.

• Minimize redundant transmissions. This reduces the rate of packets sent by

publishers and alleviates network overhead.

• Minimize receiver filtering. End host filtering of unwanted traffic is expen-

sive [42]. Furthermore, imposing high CPU loads on receivers can have

unanticipated consequences and potentially cause more trouble than the

system solves.

The goals spur a family of optimization questions, some which have been

previously addressed in the literature. We discuss previous work in section 4.7.

4.6.1 Formal Model

An overview of the scalability problem we will address in this section is as fol-

lows.

• Minimize duplicate transmissions by senders.

• Keep the number of IPMC addresses fixed at the configured limit.

• Guarantee that at most additional α fraction of network traffic needs to be

filtered by receivers.
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Let limit-IPMC and limit-filtering = α ∈ [0,∞) denote the configurable knobs

defined by the policy primitives in section 2.3.

Let L = {1, 2, . . . , K} denote the set of logical (application-level) multicast

groups. Let us assume that themessage transmission rate on logical group k ∈ L

is λk messages per second, and λ = (λ1, · · · , λK).

Let P = {1, 2, . . . , N} denote the set of processes in the system. Each process

subscribes to some number of logical groups, represented by a binary subscrip-

tion vector of lengthK, where a 1 in the kth position denotes the process receives

traffic from logical group k.

Let us define the subscription matrix W = (wnk), k ∈ L, n ∈ P, the rows of

which are the processes’ subscription vectors:

wnk =











1 process n subscribes to logical group k.

0 otherwise.

Logical groups can be mapped to one or moremeta-groups, the set of which is

denoted byGwithM = |G|. The logical group to meta-group mapping matrix,

X = (xkm), k ∈ L, m ∈ G, is defined as:

xkm =











1 logical group k is mapped to m.

0 otherwise.

Each meta-group can either be assigned a physical IPMC address, in which case

each logical group mapped to the meta-group transmits to that address, or it

can be made to use point-to-point unicast. A transport vector ~T = (tm)m∈G is

defined for the meta-groups as:

tm =











1 if meta-group m uses physical IPMC.

0 ifm uses point-to-point unicast.
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Processes map to one or more meta-groups, depending on subscription pat-

terns. The listening matrix, Z = (znm), n ∈ P, m ∈ G, specifies which meta-

groups each process must join:

znm =











1 process n should join meta-group m.

0 otherwise.

The formal optimization question we wish to solve is the following.

Definition 7 (MCMD’s Optimization Problem) Given a subscription matrix W ,

address bound limit-IPMC and α ≥ 0, find a set of mappings X,Z and a transport

vector ~T = (tm)m∈G such that:

min
X,Z,~T

∑

m∈G

∑

k∈L

λkxkm

(

tm + (1− tm)
∑

n∈P

znm

)

(4.1)

subject to the constraints:

∑

m∈G

znm · xkm − wnk ≥ 0 ∀n ∈ P, ∀k ∈ L (4.2)

∑

m∈G

∑

k∈L

∑

n∈P

λkznmxkmtm (1− (1− α)wnk) ≥ 0 (4.3)

∑

m∈G

tm ≤ limit-IPMC (4.4)

Primary objective (4.1) minimizes the aggregate rate of transmissions, reflect-

ing our goal of minimizing packet duplicates. Equation (4.2) specifies that all

subscribers should receive at least one copy of the traffic they are interested in.

Inequality (4.3) guarantees that the aggregate rate of traffic needed to be filtered

by receivers should never exceed more than α fraction of the total traffic flow.

Finally, constraint (4.4) makes sure that at most limit-IPMC physical IPMC ad-

dresses are used. The problem can be further constrained to impose the max-
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IPMC per-node limit on the number of physical IPMC addresses in a straight-

forward manner; we will assume these limits are reflected in limit-IPMC for

sake of simplicity.

4.6.2 The MCMDHeuristic

Wepropose an algorithm for the above optimization problemwhich simulations

suggest will perform well in practice.

First we cluster logical groups in the discrete space of user interests (using

the vector (wnk)n∈P for logical group k ∈ L) into limit-IPMC clusters as to min-

imize total filtering cost incurred by receivers. This will automatically satisfies

constraint (4.2). For this step, we use the k-means algorithm from [81] since it

has been the most competitive in the channelization literature.

We could now take each cluster and assign a single physical IPMC address

to all logical groups it contains, (set tm = 1 for all logical groups m in the clus-

ter), and then have the affected users join those groups (znm = 1 for affected

users n). There will be no network transmissions costs and thus objective (4.1)

is minimized. However, even though the clustering algorithm will attempt to

minimize aggregate filtering costs, they might still exceed more than α portion

of the network traffic, thus violating constraint (4.3).

To produce a feasible solution, the second step of the algorithm is to gradu-

ally alleviate filtering costs by determining which logical group m would max-

imally reduce the filtering cost without increasing the transmission cost by too

much, and promote it to use point-to-point unicast (i.e. set tm = 0). Specifically,
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we pick the group m that maximizes the ratio

{reduction in filtering cost}

{extra transmission cost}

if it were made to use point-to-point unicast. This step is repeated until the

relative filtering constraint (4.3) is satisfied.

The MCMD agent periodically reruns the algorithm to reflect changes due

to membership changes. The k-means algorithm has the virtue of being incre-

mentally stable when it is given previous mappings as input, implying that our

heuristic will not produce disruptive updates following minor changes in sub-

scription patterns.

4.6.3 Evaluation on WEBSPHERE

We simulated the MCMD heuristic on the data sets and models while varying

limit-IPMC, the total number of physical IPMC groups. We will start by giving

special attention to the WEBSPHERE graph, as we believe that the types of com-

munication patterns seen in that real-world system are typical for data centers,

confirming the validity of our approach. It illuminates the trade-off between fil-

tering of superfluous traffic and a greater number of physical group that could

be anticipated in a real deployment.

We first ran the algorithm on three different sets of topics from the WEB-

SPHERE graph: (i) All topics; (ii) Any-to-few (i.e., few-to-few and many-to-few),

and (iii) Any-to-many (i.e., few-to-many and many-to-many).

The division of topics into clearly separated categories in figure 4.8 does

not automatically imply that MCMD will work well with a handful of physi-

107



0 50 100 150 200
0

50

100

150

200

250

300

350

400

Number of IPMC groups

F
ilt

er
in

g 
ov

er
he

ad
, a

s 
%

 o
f u

se
fu

l r
ec

ei
ve

r 
B

W

 

 
All  (2890 topics)
Any−to−Few  (2624 topics)
Any−to−Many  (266 topics)
True−MC  (751 topics)

Figure 4.16: WEBSPHERE: The cost of a single multicast with the MCMD
heuristic vs. number of physical IPMC groups.

cal IPMC addresses. The topics must exhibit significant affinity to be collapsed

into a smaller number of physical IPMC multicast groups.

Figure 4.16 shows that there is significant reduction of filtering cost when the

number of groups is increased. When clustering the any-to-few topics with 100

physical IPMC groups, the filtering overhead achieved topics is 12% of network

bandwidth, whereas with 200 IPMC groups the overhead it becomes negligi-

ble. This means that the 2,624 any-to-few topics contain at most 200 exact user

patterns.

The simulation results for WEBSPHERE indicate that a system comprising

thousands of topics exhibiting complex subscription patterns, can be mapped

to only 100 physical IPMC groups, a number that is entirely feasible on mod-

ern hardware, while incurring approximately 4% of filtering overhead. When
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Figure 4.17: WEBSPHERE: Trade-off between filtering cost and transmis-
sion cost for a single multicast using the MCMD heuristic for
a fixed number of physical groups.

limit-IPMC is increased to 200, the filtering overhead is a meager 0.5% of net-

work traffic. Furthermore, figure 4.17 shows that with a filtering overhead of

at least 3% and 5 IPMC groups results in no duplicate transmissions in the net-

work.

Even though a systematic re-optimization of the WAS code base could reap

the same reduction in network traffic as that by using the MCMD heuristic,

such a process is both tedious and error-prone. The MCMD heuristic makes it

possible to exploit the correlation across topics automatically.
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Figure 4.18: Cost of a single multicast using the MCMD heuristic on sam-
ples from the data sets and models vs. number of physical
groups.
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Figure 4.19: Percentage of total cost savings achieved using the MCMD
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4.6.4 Evaluation on other graphs

We ran the MCMD heuristic on samples of 1,000 groups from each of the re-

maining data sets and models. We fixed the value of α, the proportion of su-

perfluous traffic that can be filtered, to 20%. Figure 4.18(b) shows the cost func-

tion as a function of the total number of physical IPMC groups available in the

system. Clearly, if there are 1,000 physical IPMC groups available there is no

filtering cost, and transmission cost is one packet per group. We draw the HI-

ERARCHY model separately on figure 4.18(a) because of the high costs associated

with multicasts in graphs produced by the model.

The results show that if MCMD gets super-linear savings in the number of

physical IPMC groups. Looking at figure 4.19 we see that with only 100 to 200

physical IPMC addresses, we save over 50% of the total cost of a single multicast

call. These significant cost savings hold true for not only the systems data sets
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and models, but also the social data sets.

We can conclude that clustering membership, for instance via the MCMD

heuristics, is a viable and attractive option to optimize systems in large-scale

data centers.

4.7 Related Work

Recently, de-duplication of Internet traffic has become a hot topic [29, 78]. Mea-

surements show that in a trace of outgoing university traffic, some 12-15% of

packet contents were redundant, whereas for a trace of a data center link the

number is as high as 45% [30]. The idea is to avoid resending identical strings of

information across routers by maintaining a fingerprint database for substrings

encountered in recent packets, and instead send a shim packet which the desti-

nation router can inflate using its version of the database.

A natural question to ask is whether network de-duplication at the packet

level will subsume efforts to enable IP multicast to minimize redundant uni-

cast traffic, such as presented in this dissertation. Our work on Dr. Multicast is

more focused on communication within a data center, and thus through switch-

ing hierarchies as opposed to sophisticated routers as targeted by Anand et al.

[30]. The network de-duplication techniques could be deployed in the switches

with some potential savings on regular traffic as well as identical application-

level multicast packets. However, maintaining a fingerprint database is costly

in terms of memory, requiring data centers to purchase new expensive hard-

ware. IP multicast is backward-compatible, and using Dr. Multicast one also

minimizes the traffic incurred by application-level multicast in the data center
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at the packet level.

Several papers have been written about the optimization problem at the

heart of Dr. Multicast. Work on the channelization problem [90, 81, 25] explores

the following formulation: Allocate a fixed number of IPMC addresses to min-

imize a linear combination of sender transmission costs and receiver process-

ing costs such that all subscribers receive all messages they are interested in

at least once. The problem is unsurprisingly NP -complete [25], and the most

competitive heuristic for a range of input is the k-means clustering algorithm

[81]. The channelization problem does not address the fact that end-host NIC

performance degrades with large numbers of multicast groups. Thus, an opti-

mal solution to the channelization problem may require receivers to join a large

number of groups. These papers focus only on allocating physical IPMC ad-

dresses, and while hybrid solutions using IPMC and point-to-point unicast are

briefly mentioned, they are deferred to future work.

In an earlier version of Dr. Multicast [85], we consider the NP -complete

problem of minimizing the number of IPMC addresses subject to zero receiver

filtering, and minimize network traffic as a secondary objective. We provided

a simple greedy algorithm for address allocation which forces zero receiver fil-

tering. However, this approach is sensitive to minor perturbations in group

membership and thus incrementally unstable. Since Dr. Multicast needs to be

able to tolerate limited levels of churn in a stable fashion, we decided to relax

the zero receiver filtering guarantee.

Among the systems that may directly benefit from understanding group

affinity is Gravity [56]. The system is a small-world peer-to-peer overlay that

dynamically clusters nodes in the overlay based on users’ subscription pref-
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erences. The goal is to minimize propagation cost for routing in the overlay,

making it suitable for high-speed wide-area message dissemination such as a

publish/subscribe service on the Internet.

The physics community has become interested in assortative mixing in net-

works in the recent years [70, 69]. Assortative mixing is the tendency of high-

degree vertices to attach to other high-degree vertices, and similarly, disassor-

tative mixing is when high-degree vertices connect to low-degree ones. An as-

sortativity coefficient is defined by Newman in [70] takes values between −1

and 1 denoting respectively fully disassortative and full assortativity between

vertices. This value is akin to the average value of ∆ defined in section 4.5.2, al-

though there are crucial differences. Newman shows that several social data sets

show assortative mixing, whereas technological data sets he considers display

disassortative mixing. He shows that processes such as preferential attachment

[36] are incomplete because they fail to capture assortativity. An intriguing fu-

ture direction is to generalize Newman’s analysis to support bipartite graphs

with two distinct vertex types (users and groups), and compute the assortativ-

ity coefficient or a related quantity for the data sets considered in this chapter.

Such an analysis could give insight into the impact of vertex degrees on group

affinity.

Recent papers in the data mining literature, for instance by Backstrom et

al. [32] and Crandall et al. [46], analyze the evolution of social networks like

LiveJournal andWikipedia over time. They look at how groups grow with time

and the process by which a user decides to join a community or contribute to an

article. Analyzing the temporal characteristics of systems group membership

graphs is a particularly compelling future direction towards understanding the
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structure and opportunity of affinity in distributed systems.

4.8 Conclusion

Group affinity, the degree to which groups overlap, is a problem at the heart of

MCMD, GO as well as other systems [56, 81, 29]. Despite the practical benefits

arising from optimizations of group overlaps [25, 81], little work has been done

to study affinity in real-world instances.

We analyzed four data sets from large-scale social settings, Y-GROUPS,

WIKIPEDIA, AMAZON and LIVEJOURNAL, as well as a novel model based on

preferential attachment (MUTUAL-INTEREST), and found that group affinity

arising in this setting is limited and comparable to that which might happen

by random chance.

We then analyzed a data set from a real-world system from IBMWEBSPHERE

and discovered substantial and systematic overlaps between groups. We also

presented a novel HIERARCHY model for the Live Objects platform that embod-

ies similar characteristics.

We formalized the optimization problem at the core of MCMD, and devised

a heuristic based on k-means to cluster similar logical groups into physical

IPMC groups while minimizing the cost of sending and receiving a multicast

message. Finally, we evaluated the heuristic on the data sets and models, and

find that it has high potential for substantial cost savings for multicast in data

centers.
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CHAPTER 5

CONCLUSION

Let us summarize what we have discussed and accomplished in this thesis

so far. We began this thesis by addressing scalability issues with two different

group communication paradigms in distributed systems.

One of these paradigms, IP Multicast, runs into a wall of trouble beyond

a certain number of multicast groups: switch and router state space become

exhausted and the NIC filters saturate, so the nodes’ kernels become responsible

for filtering out unwanted traffic. An experiment (see figure 2.2) shows that

nodes are unable to keep up with the IP Multicast traffic if more than roughly

100 groups use the technology. Since administrators have no control over the

use or scale of IP Multicast in their data centers, they frequently opt to disable

the technology to prevent catastrophes.

We designed Dr. Multicast to allow fine-grained control of the IP Multicast

technology. Dr. Multicast makes use of the technology as far it can scale, but

then transparently uses slower but safe group communication via point-to-point

unicast. The system is fully backwards-compatible with both applications and

networking hardware, meaning that no changes are required to deploy Dr. Mul-

ticast in a data center. The system is designed to be smart about its allocation

of sparse IP Multicast resources by trying to merge groups with similar mem-

bership. The extent to which such resource sharing can be performed depends

heavily on properties of the groups and their overlaps. This point prompted a

more scientific inquiry into the structure of group affinity which we undertook

in chapter 4.
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The other paradigm we discussed is one where we use gossip protocols for

group communication. We made the observation that as the number of groups

scales up, protocols that gossip independently for each group lose a crucial

property of gossip: to use fixed bandwidth for group communication.

We proposed the GO platform to solve this conundrum. Our system allows

an administrator to specify a maximum bandwidth that can be used for gossip

communication at a node, applications then declare the rate at which they in-

tend to gossip and are allowed only if the bandwidth policy at the node can be

respected. We make the observation that gossip rumors tend to be small rela-

tive to the size of an IP packet, and thus multiple rumors can be stacked into

a single message at negligible cost to the operating system and network. The

question becomes: what rumors should be stacked in a message to a neighbor?

We developed a heuristic that aims to optimize delivery speed by maximizing

the utility of rumor stacked in a message. The utility depends on the age of the

rumor, the number of nodes who are interested in it as well as the “distance” of

the rumor to its final destination. The distance here depends on the structure of

group overlaps in the system, a second reason we chose to study group affinity.

Whereas the first two chapters were centered on the engineering aspects of

group communication layers, we addressed the group affinity questions that

arose in both systems from a scientific standpoint in chapter 4. We began by

presenting a number of group membership data sets, both sociological data set

and the IBM WEBSPHERE system, whose structure we set out to explore. De-

gree distributions in sociological data tend to be power-laws, so we devised a

MUTUAL-INTEREST model based on preferential attachment, a popular genera-

tive model for power-law degree distributions. The advantage of using such a
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model is that it captures the statistics we observed in the sociological data sets,

and gives engineers a tool to synthesize realistic group membership to evaluate

their systems at an arbitrary scale. We also presented a systems oriented HI-

ERARCHY model, based on component hierarchies that arise from layered and

distributed system design, such as in Live Objects.

We noticed that pairwise overlaps, or affinity, of the groups in the sociologi-

cal data sets and the MUTUAL-INTEREST model was low. However, the systems

data set (from WEBSPHERE) displays remarkable structure, and the MUTUAL-

INTEREST model does as well by construction. We devised a group clustering

heuristic to allocate the sparse IP Multicast resources in the Dr. Multicast set-

ting, under a particular optimization model, and evaluated this heuristic on the

data sets and models. We found that clustering is extremely helpful, even in the

sociological data sets, and in the WEBSPHERE data set we are able to condense

all groups into a small number of IP Multicast groups with negligible network

overhead (figure 4.18(b)).

From the limited data we looked at, it is impossible to draw general conclu-

sions about group affinity. Although human behavior often directly influences

the groups arising in distributed systems, the sociological data sets are mainly

interesting from a sociological perspective since performing optimization of any

system incorporating human affinity depends on a different level of abstraction

for groups. For instance, if we intend to optimize Amazon’s product recommen-

dations as a publish-subscribe system by using Dr. Multicast, the input group

membership graph should be the system’s nodes to groups, not users to groups,

with the important difference that a system node abstracts the aggregate group

membership of the hundreds or thousands of users that the node stores, provid-
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ing very different results from the AMAZON users to groups data set.

The single systems data point we obtained (WEBSPHERE) embodies much of

the group structure that we suspect is commonplace in large distributed sys-

tems. An intriguing question is whether other real systems produce member-

ship with substantial group affinity. We hope to see progress made towards an-

swering this question, but our ability to explore the problem will depend on the

cooperation of the kinds of large companies and/or academic researchers, who

will need to make group data from their systems available. As mentioned ear-

lier, understanding the temporal aspects of system groupmembership would be

rewarding, both from a scientific perspective (“what fundamental processes drive

the group structure?”) as well as an engineering perspective (“how should we de-

cide on the right protocols and optimize group communication dynamically?”). Our

affinity investigation should be viewed as a first step towards addressing struc-

ture that has for the most part been ignored by engineers, and has important

consequences as demonstrated by optimizations in the systems we presented.

We conclude that group scalability in distributed systems has been lacking,

as evidenced by IP Multicast losing packets and gossip protocols, but that sys-

tems such as Dr. Multicast and GO can remedy the situation by giving admin-

istrators much needed control. The icing on the cake is that such systems can

furthermore enhance network performance by exploiting group affinity present

in those distributed systems.
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